Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales

Autores
Sanz, Cecilia Verónica
Año de publicación
2002
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Jordán, Ramiro
De Giusti, Armando Eduardo
Descripción
Esta tesis tiene como objetivo la investigación de técnicas de clasificación para imágenes digitales, en particular para aquellas obtenidas con sensores remotos. El avance tecnológico permite en la actualidad obtener imágenes hiperespectrales (muestreos continuos de intervalos anchos del espectro), con un volumen de información considerablemente mayor comparado con el que se ha tenido hasta el momento con las imágenes multiespectrales. Esto ha llevado a los investigadores a buscar nuevas técnicas de manejo y clasificación que permitan explotar adecuadamente los datos disponibles. El principal objetivo de esta investigación es encontrar un método de clasificación que de la posibilidad de trabajar con patrones N-dimensionales, y permita integrar información de diferente naturaleza. En este caso particular, se utiliza la información provista por las imágenes hiperespectrales y los datos auxiliares que se tienen sobre el área de estudio en cuestión para la clasificación. En la aplicación planteada en esta tesis, a la información espacial comúnmente utilizada, se le agregan datos de origen espectral. El aporte consiste en la presentación de una variación del método conocido como razonamiento evidencial, y a la que referiremos como Razonamiento Evidencial Dinámico (RED). El método RED permite el entrenamiento del clasificador mediante aprendizaje supervisado incorporando nueva evidencia para la clasificación. A su vez establece una regla de decisión diferente, basada en las medidas de plausibilidad, y soporte, pero que también tiene en cuenta la cantidad de fuentes que aportan evidencia. Se considera la incertidumbre asociada a los datos y se analiza si se debe optar por asignar el objeto a la clase con mayor soporte dentro del marco de discernimiento o se debe rechazar dicha asignación por falta de evidencia o por ambigüedad. Se evalúa su comportamiento en imágenes hiperespectrales de áreas cultivadas en la región de Nebraska (USA), distinguiendo entre diferentes tipos de cultivos para una etapa específica de su evolución (etapa de crecimiento, media estación). La elección del área de estudio fue definida por la disponibilidad de datos, ya que el Dr. Jordan (Director de Tesis) ha estado en contacto con los integrantes del proyecto “Verde” en USA. Se compara el comportamiento de RED respecto del de los clasificadores convencionales. Por otra parte, se presenta un análisis de diferentes alternativas de decisión evaluándolas respecto de la utilizada por RED. El clasificador propuesto permite mejorar los resultados obtenidos en la clasificación, obteniéndose una precisión promedio de alrededor de un 90% sobre el conjunto de muestras de test.
Doctor en Ciencias Exactas, orientación Informática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Métodos de clasificación
Procesamiento de imagen
Cultivo
Investigación agraria
Reconocimiento de patrones
Sensado remoto
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/2213

id SEDICI_7bd860348808c893687fbba8f8348b3d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/2213
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectralesSanz, Cecilia VerónicaCiencias ExactasMétodos de clasificaciónProcesamiento de imagenCultivoInvestigación agrariaReconocimiento de patronesSensado remotoEsta tesis tiene como objetivo la investigación de técnicas de clasificación para imágenes digitales, en particular para aquellas obtenidas con sensores remotos. El avance tecnológico permite en la actualidad obtener imágenes hiperespectrales (muestreos continuos de intervalos anchos del espectro), con un volumen de información considerablemente mayor comparado con el que se ha tenido hasta el momento con las imágenes multiespectrales. Esto ha llevado a los investigadores a buscar nuevas técnicas de manejo y clasificación que permitan explotar adecuadamente los datos disponibles. El principal objetivo de esta investigación es encontrar un método de clasificación que de la posibilidad de trabajar con patrones N-dimensionales, y permita integrar información de diferente naturaleza. En este caso particular, se utiliza la información provista por las imágenes hiperespectrales y los datos auxiliares que se tienen sobre el área de estudio en cuestión para la clasificación. En la aplicación planteada en esta tesis, a la información espacial comúnmente utilizada, se le agregan datos de origen espectral. El aporte consiste en la presentación de una variación del método conocido como razonamiento evidencial, y a la que referiremos como Razonamiento Evidencial Dinámico (RED). El método RED permite el entrenamiento del clasificador mediante aprendizaje supervisado incorporando nueva evidencia para la clasificación. A su vez establece una regla de decisión diferente, basada en las medidas de plausibilidad, y soporte, pero que también tiene en cuenta la cantidad de fuentes que aportan evidencia. Se considera la incertidumbre asociada a los datos y se analiza si se debe optar por asignar el objeto a la clase con mayor soporte dentro del marco de discernimiento o se debe rechazar dicha asignación por falta de evidencia o por ambigüedad. Se evalúa su comportamiento en imágenes hiperespectrales de áreas cultivadas en la región de Nebraska (USA), distinguiendo entre diferentes tipos de cultivos para una etapa específica de su evolución (etapa de crecimiento, media estación). La elección del área de estudio fue definida por la disponibilidad de datos, ya que el Dr. Jordan (Director de Tesis) ha estado en contacto con los integrantes del proyecto “Verde” en USA. Se compara el comportamiento de RED respecto del de los clasificadores convencionales. Por otra parte, se presenta un análisis de diferentes alternativas de decisión evaluándolas respecto de la utilizada por RED. El clasificador propuesto permite mejorar los resultados obtenidos en la clasificación, obteniéndose una precisión promedio de alrededor de un 90% sobre el conjunto de muestras de test.Doctor en Ciencias Exactas, orientación InformáticaUniversidad Nacional de La PlataFacultad de Ciencias ExactasJordán, RamiroDe Giusti, Armando Eduardo2002info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/2213https://doi.org/10.35537/10915/2213spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T12:28:30Zoai:sedici.unlp.edu.ar:10915/2213Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 12:28:31.816SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales
title Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales
spellingShingle Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales
Sanz, Cecilia Verónica
Ciencias Exactas
Métodos de clasificación
Procesamiento de imagen
Cultivo
Investigación agraria
Reconocimiento de patrones
Sensado remoto
title_short Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales
title_full Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales
title_fullStr Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales
title_full_unstemmed Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales
title_sort Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales
dc.creator.none.fl_str_mv Sanz, Cecilia Verónica
author Sanz, Cecilia Verónica
author_facet Sanz, Cecilia Verónica
author_role author
dc.contributor.none.fl_str_mv Jordán, Ramiro
De Giusti, Armando Eduardo
dc.subject.none.fl_str_mv Ciencias Exactas
Métodos de clasificación
Procesamiento de imagen
Cultivo
Investigación agraria
Reconocimiento de patrones
Sensado remoto
topic Ciencias Exactas
Métodos de clasificación
Procesamiento de imagen
Cultivo
Investigación agraria
Reconocimiento de patrones
Sensado remoto
dc.description.none.fl_txt_mv Esta tesis tiene como objetivo la investigación de técnicas de clasificación para imágenes digitales, en particular para aquellas obtenidas con sensores remotos. El avance tecnológico permite en la actualidad obtener imágenes hiperespectrales (muestreos continuos de intervalos anchos del espectro), con un volumen de información considerablemente mayor comparado con el que se ha tenido hasta el momento con las imágenes multiespectrales. Esto ha llevado a los investigadores a buscar nuevas técnicas de manejo y clasificación que permitan explotar adecuadamente los datos disponibles. El principal objetivo de esta investigación es encontrar un método de clasificación que de la posibilidad de trabajar con patrones N-dimensionales, y permita integrar información de diferente naturaleza. En este caso particular, se utiliza la información provista por las imágenes hiperespectrales y los datos auxiliares que se tienen sobre el área de estudio en cuestión para la clasificación. En la aplicación planteada en esta tesis, a la información espacial comúnmente utilizada, se le agregan datos de origen espectral. El aporte consiste en la presentación de una variación del método conocido como razonamiento evidencial, y a la que referiremos como Razonamiento Evidencial Dinámico (RED). El método RED permite el entrenamiento del clasificador mediante aprendizaje supervisado incorporando nueva evidencia para la clasificación. A su vez establece una regla de decisión diferente, basada en las medidas de plausibilidad, y soporte, pero que también tiene en cuenta la cantidad de fuentes que aportan evidencia. Se considera la incertidumbre asociada a los datos y se analiza si se debe optar por asignar el objeto a la clase con mayor soporte dentro del marco de discernimiento o se debe rechazar dicha asignación por falta de evidencia o por ambigüedad. Se evalúa su comportamiento en imágenes hiperespectrales de áreas cultivadas en la región de Nebraska (USA), distinguiendo entre diferentes tipos de cultivos para una etapa específica de su evolución (etapa de crecimiento, media estación). La elección del área de estudio fue definida por la disponibilidad de datos, ya que el Dr. Jordan (Director de Tesis) ha estado en contacto con los integrantes del proyecto “Verde” en USA. Se compara el comportamiento de RED respecto del de los clasificadores convencionales. Por otra parte, se presenta un análisis de diferentes alternativas de decisión evaluándolas respecto de la utilizada por RED. El clasificador propuesto permite mejorar los resultados obtenidos en la clasificación, obteniéndose una precisión promedio de alrededor de un 90% sobre el conjunto de muestras de test.
Doctor en Ciencias Exactas, orientación Informática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
description Esta tesis tiene como objetivo la investigación de técnicas de clasificación para imágenes digitales, en particular para aquellas obtenidas con sensores remotos. El avance tecnológico permite en la actualidad obtener imágenes hiperespectrales (muestreos continuos de intervalos anchos del espectro), con un volumen de información considerablemente mayor comparado con el que se ha tenido hasta el momento con las imágenes multiespectrales. Esto ha llevado a los investigadores a buscar nuevas técnicas de manejo y clasificación que permitan explotar adecuadamente los datos disponibles. El principal objetivo de esta investigación es encontrar un método de clasificación que de la posibilidad de trabajar con patrones N-dimensionales, y permita integrar información de diferente naturaleza. En este caso particular, se utiliza la información provista por las imágenes hiperespectrales y los datos auxiliares que se tienen sobre el área de estudio en cuestión para la clasificación. En la aplicación planteada en esta tesis, a la información espacial comúnmente utilizada, se le agregan datos de origen espectral. El aporte consiste en la presentación de una variación del método conocido como razonamiento evidencial, y a la que referiremos como Razonamiento Evidencial Dinámico (RED). El método RED permite el entrenamiento del clasificador mediante aprendizaje supervisado incorporando nueva evidencia para la clasificación. A su vez establece una regla de decisión diferente, basada en las medidas de plausibilidad, y soporte, pero que también tiene en cuenta la cantidad de fuentes que aportan evidencia. Se considera la incertidumbre asociada a los datos y se analiza si se debe optar por asignar el objeto a la clase con mayor soporte dentro del marco de discernimiento o se debe rechazar dicha asignación por falta de evidencia o por ambigüedad. Se evalúa su comportamiento en imágenes hiperespectrales de áreas cultivadas en la región de Nebraska (USA), distinguiendo entre diferentes tipos de cultivos para una etapa específica de su evolución (etapa de crecimiento, media estación). La elección del área de estudio fue definida por la disponibilidad de datos, ya que el Dr. Jordan (Director de Tesis) ha estado en contacto con los integrantes del proyecto “Verde” en USA. Se compara el comportamiento de RED respecto del de los clasificadores convencionales. Por otra parte, se presenta un análisis de diferentes alternativas de decisión evaluándolas respecto de la utilizada por RED. El clasificador propuesto permite mejorar los resultados obtenidos en la clasificación, obteniéndose una precisión promedio de alrededor de un 90% sobre el conjunto de muestras de test.
publishDate 2002
dc.date.none.fl_str_mv 2002
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/2213
https://doi.org/10.35537/10915/2213
url http://sedici.unlp.edu.ar/handle/10915/2213
https://doi.org/10.35537/10915/2213
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1847978293473574912
score 13.087074