Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales
- Autores
- Sanz, Cecilia Verónica
- Año de publicación
- 2002
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Jordán, Ramiro
De Giusti, Armando Eduardo - Descripción
- Esta tesis tiene como objetivo la investigación de técnicas de clasificación para imágenes digitales, en particular para aquellas obtenidas con sensores remotos. El avance tecnológico permite en la actualidad obtener imágenes hiperespectrales (muestreos continuos de intervalos anchos del espectro), con un volumen de información considerablemente mayor comparado con el que se ha tenido hasta el momento con las imágenes multiespectrales. Esto ha llevado a los investigadores a buscar nuevas técnicas de manejo y clasificación que permitan explotar adecuadamente los datos disponibles. El principal objetivo de esta investigación es encontrar un método de clasificación que de la posibilidad de trabajar con patrones N-dimensionales, y permita integrar información de diferente naturaleza. En este caso particular, se utiliza la información provista por las imágenes hiperespectrales y los datos auxiliares que se tienen sobre el área de estudio en cuestión para la clasificación. En la aplicación planteada en esta tesis, a la información espacial comúnmente utilizada, se le agregan datos de origen espectral. El aporte consiste en la presentación de una variación del método conocido como razonamiento evidencial, y a la que referiremos como Razonamiento Evidencial Dinámico (RED). El método RED permite el entrenamiento del clasificador mediante aprendizaje supervisado incorporando nueva evidencia para la clasificación. A su vez establece una regla de decisión diferente, basada en las medidas de plausibilidad, y soporte, pero que también tiene en cuenta la cantidad de fuentes que aportan evidencia. Se considera la incertidumbre asociada a los datos y se analiza si se debe optar por asignar el objeto a la clase con mayor soporte dentro del marco de discernimiento o se debe rechazar dicha asignación por falta de evidencia o por ambigüedad. Se evalúa su comportamiento en imágenes hiperespectrales de áreas cultivadas en la región de Nebraska (USA), distinguiendo entre diferentes tipos de cultivos para una etapa específica de su evolución (etapa de crecimiento, media estación). La elección del área de estudio fue definida por la disponibilidad de datos, ya que el Dr. Jordan (Director de Tesis) ha estado en contacto con los integrantes del proyecto “Verde” en USA. Se compara el comportamiento de RED respecto del de los clasificadores convencionales. Por otra parte, se presenta un análisis de diferentes alternativas de decisión evaluándolas respecto de la utilizada por RED. El clasificador propuesto permite mejorar los resultados obtenidos en la clasificación, obteniéndose una precisión promedio de alrededor de un 90% sobre el conjunto de muestras de test.
Doctor en Ciencias Exactas, orientación Informática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Métodos de clasificación
Procesamiento de imagen
Cultivo
Investigación agraria
Reconocimiento de patrones
Sensado remoto - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/2213
Ver los metadatos del registro completo
| id |
SEDICI_7bd860348808c893687fbba8f8348b3d |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/2213 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectralesSanz, Cecilia VerónicaCiencias ExactasMétodos de clasificaciónProcesamiento de imagenCultivoInvestigación agrariaReconocimiento de patronesSensado remotoEsta tesis tiene como objetivo la investigación de técnicas de clasificación para imágenes digitales, en particular para aquellas obtenidas con sensores remotos. El avance tecnológico permite en la actualidad obtener imágenes hiperespectrales (muestreos continuos de intervalos anchos del espectro), con un volumen de información considerablemente mayor comparado con el que se ha tenido hasta el momento con las imágenes multiespectrales. Esto ha llevado a los investigadores a buscar nuevas técnicas de manejo y clasificación que permitan explotar adecuadamente los datos disponibles. El principal objetivo de esta investigación es encontrar un método de clasificación que de la posibilidad de trabajar con patrones N-dimensionales, y permita integrar información de diferente naturaleza. En este caso particular, se utiliza la información provista por las imágenes hiperespectrales y los datos auxiliares que se tienen sobre el área de estudio en cuestión para la clasificación. En la aplicación planteada en esta tesis, a la información espacial comúnmente utilizada, se le agregan datos de origen espectral. El aporte consiste en la presentación de una variación del método conocido como razonamiento evidencial, y a la que referiremos como Razonamiento Evidencial Dinámico (RED). El método RED permite el entrenamiento del clasificador mediante aprendizaje supervisado incorporando nueva evidencia para la clasificación. A su vez establece una regla de decisión diferente, basada en las medidas de plausibilidad, y soporte, pero que también tiene en cuenta la cantidad de fuentes que aportan evidencia. Se considera la incertidumbre asociada a los datos y se analiza si se debe optar por asignar el objeto a la clase con mayor soporte dentro del marco de discernimiento o se debe rechazar dicha asignación por falta de evidencia o por ambigüedad. Se evalúa su comportamiento en imágenes hiperespectrales de áreas cultivadas en la región de Nebraska (USA), distinguiendo entre diferentes tipos de cultivos para una etapa específica de su evolución (etapa de crecimiento, media estación). La elección del área de estudio fue definida por la disponibilidad de datos, ya que el Dr. Jordan (Director de Tesis) ha estado en contacto con los integrantes del proyecto “Verde” en USA. Se compara el comportamiento de RED respecto del de los clasificadores convencionales. Por otra parte, se presenta un análisis de diferentes alternativas de decisión evaluándolas respecto de la utilizada por RED. El clasificador propuesto permite mejorar los resultados obtenidos en la clasificación, obteniéndose una precisión promedio de alrededor de un 90% sobre el conjunto de muestras de test.Doctor en Ciencias Exactas, orientación InformáticaUniversidad Nacional de La PlataFacultad de Ciencias ExactasJordán, RamiroDe Giusti, Armando Eduardo2002info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/2213https://doi.org/10.35537/10915/2213spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T12:28:30Zoai:sedici.unlp.edu.ar:10915/2213Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 12:28:31.816SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales |
| title |
Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales |
| spellingShingle |
Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales Sanz, Cecilia Verónica Ciencias Exactas Métodos de clasificación Procesamiento de imagen Cultivo Investigación agraria Reconocimiento de patrones Sensado remoto |
| title_short |
Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales |
| title_full |
Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales |
| title_fullStr |
Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales |
| title_full_unstemmed |
Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales |
| title_sort |
Razonamiento evidencial dinámico : Un método de clasificación aplicado al análisis de imágenes hiperespectrales |
| dc.creator.none.fl_str_mv |
Sanz, Cecilia Verónica |
| author |
Sanz, Cecilia Verónica |
| author_facet |
Sanz, Cecilia Verónica |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Jordán, Ramiro De Giusti, Armando Eduardo |
| dc.subject.none.fl_str_mv |
Ciencias Exactas Métodos de clasificación Procesamiento de imagen Cultivo Investigación agraria Reconocimiento de patrones Sensado remoto |
| topic |
Ciencias Exactas Métodos de clasificación Procesamiento de imagen Cultivo Investigación agraria Reconocimiento de patrones Sensado remoto |
| dc.description.none.fl_txt_mv |
Esta tesis tiene como objetivo la investigación de técnicas de clasificación para imágenes digitales, en particular para aquellas obtenidas con sensores remotos. El avance tecnológico permite en la actualidad obtener imágenes hiperespectrales (muestreos continuos de intervalos anchos del espectro), con un volumen de información considerablemente mayor comparado con el que se ha tenido hasta el momento con las imágenes multiespectrales. Esto ha llevado a los investigadores a buscar nuevas técnicas de manejo y clasificación que permitan explotar adecuadamente los datos disponibles. El principal objetivo de esta investigación es encontrar un método de clasificación que de la posibilidad de trabajar con patrones N-dimensionales, y permita integrar información de diferente naturaleza. En este caso particular, se utiliza la información provista por las imágenes hiperespectrales y los datos auxiliares que se tienen sobre el área de estudio en cuestión para la clasificación. En la aplicación planteada en esta tesis, a la información espacial comúnmente utilizada, se le agregan datos de origen espectral. El aporte consiste en la presentación de una variación del método conocido como razonamiento evidencial, y a la que referiremos como Razonamiento Evidencial Dinámico (RED). El método RED permite el entrenamiento del clasificador mediante aprendizaje supervisado incorporando nueva evidencia para la clasificación. A su vez establece una regla de decisión diferente, basada en las medidas de plausibilidad, y soporte, pero que también tiene en cuenta la cantidad de fuentes que aportan evidencia. Se considera la incertidumbre asociada a los datos y se analiza si se debe optar por asignar el objeto a la clase con mayor soporte dentro del marco de discernimiento o se debe rechazar dicha asignación por falta de evidencia o por ambigüedad. Se evalúa su comportamiento en imágenes hiperespectrales de áreas cultivadas en la región de Nebraska (USA), distinguiendo entre diferentes tipos de cultivos para una etapa específica de su evolución (etapa de crecimiento, media estación). La elección del área de estudio fue definida por la disponibilidad de datos, ya que el Dr. Jordan (Director de Tesis) ha estado en contacto con los integrantes del proyecto “Verde” en USA. Se compara el comportamiento de RED respecto del de los clasificadores convencionales. Por otra parte, se presenta un análisis de diferentes alternativas de decisión evaluándolas respecto de la utilizada por RED. El clasificador propuesto permite mejorar los resultados obtenidos en la clasificación, obteniéndose una precisión promedio de alrededor de un 90% sobre el conjunto de muestras de test. Doctor en Ciencias Exactas, orientación Informática Universidad Nacional de La Plata Facultad de Ciencias Exactas |
| description |
Esta tesis tiene como objetivo la investigación de técnicas de clasificación para imágenes digitales, en particular para aquellas obtenidas con sensores remotos. El avance tecnológico permite en la actualidad obtener imágenes hiperespectrales (muestreos continuos de intervalos anchos del espectro), con un volumen de información considerablemente mayor comparado con el que se ha tenido hasta el momento con las imágenes multiespectrales. Esto ha llevado a los investigadores a buscar nuevas técnicas de manejo y clasificación que permitan explotar adecuadamente los datos disponibles. El principal objetivo de esta investigación es encontrar un método de clasificación que de la posibilidad de trabajar con patrones N-dimensionales, y permita integrar información de diferente naturaleza. En este caso particular, se utiliza la información provista por las imágenes hiperespectrales y los datos auxiliares que se tienen sobre el área de estudio en cuestión para la clasificación. En la aplicación planteada en esta tesis, a la información espacial comúnmente utilizada, se le agregan datos de origen espectral. El aporte consiste en la presentación de una variación del método conocido como razonamiento evidencial, y a la que referiremos como Razonamiento Evidencial Dinámico (RED). El método RED permite el entrenamiento del clasificador mediante aprendizaje supervisado incorporando nueva evidencia para la clasificación. A su vez establece una regla de decisión diferente, basada en las medidas de plausibilidad, y soporte, pero que también tiene en cuenta la cantidad de fuentes que aportan evidencia. Se considera la incertidumbre asociada a los datos y se analiza si se debe optar por asignar el objeto a la clase con mayor soporte dentro del marco de discernimiento o se debe rechazar dicha asignación por falta de evidencia o por ambigüedad. Se evalúa su comportamiento en imágenes hiperespectrales de áreas cultivadas en la región de Nebraska (USA), distinguiendo entre diferentes tipos de cultivos para una etapa específica de su evolución (etapa de crecimiento, media estación). La elección del área de estudio fue definida por la disponibilidad de datos, ya que el Dr. Jordan (Director de Tesis) ha estado en contacto con los integrantes del proyecto “Verde” en USA. Se compara el comportamiento de RED respecto del de los clasificadores convencionales. Por otra parte, se presenta un análisis de diferentes alternativas de decisión evaluándolas respecto de la utilizada por RED. El clasificador propuesto permite mejorar los resultados obtenidos en la clasificación, obteniéndose una precisión promedio de alrededor de un 90% sobre el conjunto de muestras de test. |
| publishDate |
2002 |
| dc.date.none.fl_str_mv |
2002 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion Tesis de doctorado http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
| format |
doctoralThesis |
| status_str |
acceptedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/2213 https://doi.org/10.35537/10915/2213 |
| url |
http://sedici.unlp.edu.ar/handle/10915/2213 https://doi.org/10.35537/10915/2213 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1847978293473574912 |
| score |
13.087074 |