Análisis de imágenes hiperespectrales : Clasificación de cultivos

Autores
Sanz, Cecilia Verónica
Año de publicación
2000
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
El sensado remoto o remote sensing es la ciencia o arte de obtener información sobre un objeto, área o fenómeno a través del análisis de datos obtenidos por un dispositivo que no tiene un contacto físico con dicho objeto, área o fenómeno El avance tecnológico permite actualmente obtener imágenes hiperespectrales (muestreos contínuos de intervalos anchos del espectro), con un volumen de información considerablemente mayor comparado con el que se ha tenido hasta el momento con las imágenes multiespectrales. Los sensores hiperespectrales son instrumentos de sensado remoto que combinan la presentación espacial de un sensor de imagen con las capacidades analíticas de un espectrómetro. Pueden contener hasta cientos de bandas espectrales angostas con una resolución espectral del orden de 10 nanómetros o menor [Goe85]. Los espectrómetros producen un espectro completo para todos los píxeles de la imagen. Como resultado de tener una mayor resolución espectral se tiene la posibilidad de identificar materiales, mientras que con los sensores de bandas más anchas (por ejemplo, Landsat Thematic Mapper TM) sólo se los podía discriminar. Esto ha llevado a los investigadores a buscar nuevas técnicas de manejo y clasificación que permitan explotar adecuadamente los nuevos datos disponibles. Esta línea de investigación tiene como objetivo estudiar, analizar y encontrar métodos de clasificación que permitan tomar ventaja de la información provista por este tipo de imágenes, donde se incorporan los datos espectrales como una 3ra dimensión dentro del reconocimiento de patrones. Es decir, a la información espacial comúnmente utilizada, se le agrega la espectral. En particular, se estudia la clasificación de cultivos para una etapa específica de su evolución aplicando el método de clasificación conocido como razonamiento evidencial. Se utilizan imágenes hiperespectrales de la región de Nebraska (USA), provistas por PRA (Photon Research Association), quienes realizan investigación de los cultivos de la zona mencionada.
Eje: Sistema de tiempor real. Procesamiento de señales
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
imágenes hiperespectrales
Real time
cultivos
Signal processing systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/22162

id SEDICI_65d4990f36a65cb021e68926aac59eea
oai_identifier_str oai:sedici.unlp.edu.ar:10915/22162
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Análisis de imágenes hiperespectrales : Clasificación de cultivosSanz, Cecilia VerónicaCiencias Informáticasimágenes hiperespectralesReal timecultivosSignal processing systemsEl sensado remoto o remote sensing es la ciencia o arte de obtener información sobre un objeto, área o fenómeno a través del análisis de datos obtenidos por un dispositivo que no tiene un contacto físico con dicho objeto, área o fenómeno El avance tecnológico permite actualmente obtener imágenes hiperespectrales (muestreos contínuos de intervalos anchos del espectro), con un volumen de información considerablemente mayor comparado con el que se ha tenido hasta el momento con las imágenes multiespectrales. Los sensores hiperespectrales son instrumentos de sensado remoto que combinan la presentación espacial de un sensor de imagen con las capacidades analíticas de un espectrómetro. Pueden contener hasta cientos de bandas espectrales angostas con una resolución espectral del orden de 10 nanómetros o menor [Goe85]. Los espectrómetros producen un espectro completo para todos los píxeles de la imagen. Como resultado de tener una mayor resolución espectral se tiene la posibilidad de identificar materiales, mientras que con los sensores de bandas más anchas (por ejemplo, Landsat Thematic Mapper TM) sólo se los podía discriminar. Esto ha llevado a los investigadores a buscar nuevas técnicas de manejo y clasificación que permitan explotar adecuadamente los nuevos datos disponibles. Esta línea de investigación tiene como objetivo estudiar, analizar y encontrar métodos de clasificación que permitan tomar ventaja de la información provista por este tipo de imágenes, donde se incorporan los datos espectrales como una 3ra dimensión dentro del reconocimiento de patrones. Es decir, a la información espacial comúnmente utilizada, se le agrega la espectral. En particular, se estudia la clasificación de cultivos para una etapa específica de su evolución aplicando el método de clasificación conocido como razonamiento evidencial. Se utilizan imágenes hiperespectrales de la región de Nebraska (USA), provistas por PRA (Photon Research Association), quienes realizan investigación de los cultivos de la zona mencionada.Eje: Sistema de tiempor real. Procesamiento de señalesRed de Universidades con Carreras en Informática (RedUNCI)2000-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf126-129http://sedici.unlp.edu.ar/handle/10915/22162spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:47:33Zoai:sedici.unlp.edu.ar:10915/22162Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:47:33.625SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Análisis de imágenes hiperespectrales : Clasificación de cultivos
title Análisis de imágenes hiperespectrales : Clasificación de cultivos
spellingShingle Análisis de imágenes hiperespectrales : Clasificación de cultivos
Sanz, Cecilia Verónica
Ciencias Informáticas
imágenes hiperespectrales
Real time
cultivos
Signal processing systems
title_short Análisis de imágenes hiperespectrales : Clasificación de cultivos
title_full Análisis de imágenes hiperespectrales : Clasificación de cultivos
title_fullStr Análisis de imágenes hiperespectrales : Clasificación de cultivos
title_full_unstemmed Análisis de imágenes hiperespectrales : Clasificación de cultivos
title_sort Análisis de imágenes hiperespectrales : Clasificación de cultivos
dc.creator.none.fl_str_mv Sanz, Cecilia Verónica
author Sanz, Cecilia Verónica
author_facet Sanz, Cecilia Verónica
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
imágenes hiperespectrales
Real time
cultivos
Signal processing systems
topic Ciencias Informáticas
imágenes hiperespectrales
Real time
cultivos
Signal processing systems
dc.description.none.fl_txt_mv El sensado remoto o remote sensing es la ciencia o arte de obtener información sobre un objeto, área o fenómeno a través del análisis de datos obtenidos por un dispositivo que no tiene un contacto físico con dicho objeto, área o fenómeno El avance tecnológico permite actualmente obtener imágenes hiperespectrales (muestreos contínuos de intervalos anchos del espectro), con un volumen de información considerablemente mayor comparado con el que se ha tenido hasta el momento con las imágenes multiespectrales. Los sensores hiperespectrales son instrumentos de sensado remoto que combinan la presentación espacial de un sensor de imagen con las capacidades analíticas de un espectrómetro. Pueden contener hasta cientos de bandas espectrales angostas con una resolución espectral del orden de 10 nanómetros o menor [Goe85]. Los espectrómetros producen un espectro completo para todos los píxeles de la imagen. Como resultado de tener una mayor resolución espectral se tiene la posibilidad de identificar materiales, mientras que con los sensores de bandas más anchas (por ejemplo, Landsat Thematic Mapper TM) sólo se los podía discriminar. Esto ha llevado a los investigadores a buscar nuevas técnicas de manejo y clasificación que permitan explotar adecuadamente los nuevos datos disponibles. Esta línea de investigación tiene como objetivo estudiar, analizar y encontrar métodos de clasificación que permitan tomar ventaja de la información provista por este tipo de imágenes, donde se incorporan los datos espectrales como una 3ra dimensión dentro del reconocimiento de patrones. Es decir, a la información espacial comúnmente utilizada, se le agrega la espectral. En particular, se estudia la clasificación de cultivos para una etapa específica de su evolución aplicando el método de clasificación conocido como razonamiento evidencial. Se utilizan imágenes hiperespectrales de la región de Nebraska (USA), provistas por PRA (Photon Research Association), quienes realizan investigación de los cultivos de la zona mencionada.
Eje: Sistema de tiempor real. Procesamiento de señales
Red de Universidades con Carreras en Informática (RedUNCI)
description El sensado remoto o remote sensing es la ciencia o arte de obtener información sobre un objeto, área o fenómeno a través del análisis de datos obtenidos por un dispositivo que no tiene un contacto físico con dicho objeto, área o fenómeno El avance tecnológico permite actualmente obtener imágenes hiperespectrales (muestreos contínuos de intervalos anchos del espectro), con un volumen de información considerablemente mayor comparado con el que se ha tenido hasta el momento con las imágenes multiespectrales. Los sensores hiperespectrales son instrumentos de sensado remoto que combinan la presentación espacial de un sensor de imagen con las capacidades analíticas de un espectrómetro. Pueden contener hasta cientos de bandas espectrales angostas con una resolución espectral del orden de 10 nanómetros o menor [Goe85]. Los espectrómetros producen un espectro completo para todos los píxeles de la imagen. Como resultado de tener una mayor resolución espectral se tiene la posibilidad de identificar materiales, mientras que con los sensores de bandas más anchas (por ejemplo, Landsat Thematic Mapper TM) sólo se los podía discriminar. Esto ha llevado a los investigadores a buscar nuevas técnicas de manejo y clasificación que permitan explotar adecuadamente los nuevos datos disponibles. Esta línea de investigación tiene como objetivo estudiar, analizar y encontrar métodos de clasificación que permitan tomar ventaja de la información provista por este tipo de imágenes, donde se incorporan los datos espectrales como una 3ra dimensión dentro del reconocimiento de patrones. Es decir, a la información espacial comúnmente utilizada, se le agrega la espectral. En particular, se estudia la clasificación de cultivos para una etapa específica de su evolución aplicando el método de clasificación conocido como razonamiento evidencial. Se utilizan imágenes hiperespectrales de la región de Nebraska (USA), provistas por PRA (Photon Research Association), quienes realizan investigación de los cultivos de la zona mencionada.
publishDate 2000
dc.date.none.fl_str_mv 2000-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/22162
url http://sedici.unlp.edu.ar/handle/10915/22162
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
126-129
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846063901809049600
score 13.22299