Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave
- Autores
- Alexander, P.; Torre, A. de la; Kaifler, N.; Kaifler, B.; Salvador, J.; Llamedo, P.; Hierro, R.; Hormaechea, José Luis
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Gravity waves (GW) are a crucial coupling mechanism for the exchange of energy and momentum flux (MF) between the lower, middle, and upper layers of the atmosphere. Among the remote instruments used to study them, there has been a continuous increment in the last years in the installation and use of lidars (light detection and ranging) all over the globe. Two of them, which are only night operating, are located in Río Gallegos (−69.3◦ W, −51.6◦ S) and Río Grande (−67.8◦ W, −53.8◦ S), in the neighborhood of the austral tip of South America. This is a well-known GWhot spot from late autumn to early spring. Neither the source for this intense activity nor the extent of its effects have been yet fully elucidated. In the last years, different methods that combine diverse retrieval techniques have been presented in order to describe the three-dimensional (3-D) structure of observed GW, their propagation direction, their energy, and the MF that they carry. Assuming the presence of a dominant GWin the covered region, we develop here a technique that uses the temperature profiles from two simultaneously working close lidars to infer the vertical wavelength, ground-based frequency, and horizontal wavelength along the direction joining both instruments. If in addition within the time and spatial frame of both lidars there is also a retrieval from a satellite like SABER (Sounding of the Atmosphere using Broadband Emission Radiometry), then we show that it is possible to infer also the second horizontal wavelength and therefore reproduce the full 3-D GWstructure. Our method becomes verified with an example that includes tests that corroborate that both lidars and the satellite are sampling the same GW. The improvement of the Río Gallegos lidar performance could lead in the future to the observation of a wealth of cases during the GWhigh season. Between 8 and 14 hr (depending on the month) of continuous nighttime data could be obtained in the stratosphere and mesosphere in simultaneous soundings from both ground-based lidars.
Facultad de Ciencias Astronómicas y Geofísicas
Consejo Nacional de Investigaciones Científicas y Técnicas - Materia
- Ciencias Astronómicas
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/113735
Ver los metadatos del registro completo
id |
SEDICI_7a175401355cde0de0c01620580fa1b0 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/113735 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity WaveAlexander, P.Torre, A. de laKaifler, N.Kaifler, B.Salvador, J.Llamedo, P.Hierro, R.Hormaechea, José LuisCiencias AstronómicasGravity waves (GW) are a crucial coupling mechanism for the exchange of energy and momentum flux (MF) between the lower, middle, and upper layers of the atmosphere. Among the remote instruments used to study them, there has been a continuous increment in the last years in the installation and use of lidars (light detection and ranging) all over the globe. Two of them, which are only night operating, are located in Río Gallegos (−69.3◦ W, −51.6◦ S) and Río Grande (−67.8◦ W, −53.8◦ S), in the neighborhood of the austral tip of South America. This is a well-known GWhot spot from late autumn to early spring. Neither the source for this intense activity nor the extent of its effects have been yet fully elucidated. In the last years, different methods that combine diverse retrieval techniques have been presented in order to describe the three-dimensional (3-D) structure of observed GW, their propagation direction, their energy, and the MF that they carry. Assuming the presence of a dominant GWin the covered region, we develop here a technique that uses the temperature profiles from two simultaneously working close lidars to infer the vertical wavelength, ground-based frequency, and horizontal wavelength along the direction joining both instruments. If in addition within the time and spatial frame of both lidars there is also a retrieval from a satellite like SABER (Sounding of the Atmosphere using Broadband Emission Radiometry), then we show that it is possible to infer also the second horizontal wavelength and therefore reproduce the full 3-D GWstructure. Our method becomes verified with an example that includes tests that corroborate that both lidars and the satellite are sampling the same GW. The improvement of the Río Gallegos lidar performance could lead in the future to the observation of a wealth of cases during the GWhigh season. Between 8 and 14 hr (depending on the month) of continuous nighttime data could be obtained in the stratosphere and mesosphere in simultaneous soundings from both ground-based lidars.Facultad de Ciencias Astronómicas y GeofísicasConsejo Nacional de Investigaciones Científicas y Técnicas2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/113735enginfo:eu-repo/semantics/altIdentifier/issn/2333-5084info:eu-repo/semantics/altIdentifier/doi/10.1029/2020EA001074info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:26:25Zoai:sedici.unlp.edu.ar:10915/113735Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:26:25.803SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave |
title |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave |
spellingShingle |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave Alexander, P. Ciencias Astronómicas |
title_short |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave |
title_full |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave |
title_fullStr |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave |
title_full_unstemmed |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave |
title_sort |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave |
dc.creator.none.fl_str_mv |
Alexander, P. Torre, A. de la Kaifler, N. Kaifler, B. Salvador, J. Llamedo, P. Hierro, R. Hormaechea, José Luis |
author |
Alexander, P. |
author_facet |
Alexander, P. Torre, A. de la Kaifler, N. Kaifler, B. Salvador, J. Llamedo, P. Hierro, R. Hormaechea, José Luis |
author_role |
author |
author2 |
Torre, A. de la Kaifler, N. Kaifler, B. Salvador, J. Llamedo, P. Hierro, R. Hormaechea, José Luis |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas |
topic |
Ciencias Astronómicas |
dc.description.none.fl_txt_mv |
Gravity waves (GW) are a crucial coupling mechanism for the exchange of energy and momentum flux (MF) between the lower, middle, and upper layers of the atmosphere. Among the remote instruments used to study them, there has been a continuous increment in the last years in the installation and use of lidars (light detection and ranging) all over the globe. Two of them, which are only night operating, are located in Río Gallegos (−69.3◦ W, −51.6◦ S) and Río Grande (−67.8◦ W, −53.8◦ S), in the neighborhood of the austral tip of South America. This is a well-known GWhot spot from late autumn to early spring. Neither the source for this intense activity nor the extent of its effects have been yet fully elucidated. In the last years, different methods that combine diverse retrieval techniques have been presented in order to describe the three-dimensional (3-D) structure of observed GW, their propagation direction, their energy, and the MF that they carry. Assuming the presence of a dominant GWin the covered region, we develop here a technique that uses the temperature profiles from two simultaneously working close lidars to infer the vertical wavelength, ground-based frequency, and horizontal wavelength along the direction joining both instruments. If in addition within the time and spatial frame of both lidars there is also a retrieval from a satellite like SABER (Sounding of the Atmosphere using Broadband Emission Radiometry), then we show that it is possible to infer also the second horizontal wavelength and therefore reproduce the full 3-D GWstructure. Our method becomes verified with an example that includes tests that corroborate that both lidars and the satellite are sampling the same GW. The improvement of the Río Gallegos lidar performance could lead in the future to the observation of a wealth of cases during the GWhigh season. Between 8 and 14 hr (depending on the month) of continuous nighttime data could be obtained in the stratosphere and mesosphere in simultaneous soundings from both ground-based lidars. Facultad de Ciencias Astronómicas y Geofísicas Consejo Nacional de Investigaciones Científicas y Técnicas |
description |
Gravity waves (GW) are a crucial coupling mechanism for the exchange of energy and momentum flux (MF) between the lower, middle, and upper layers of the atmosphere. Among the remote instruments used to study them, there has been a continuous increment in the last years in the installation and use of lidars (light detection and ranging) all over the globe. Two of them, which are only night operating, are located in Río Gallegos (−69.3◦ W, −51.6◦ S) and Río Grande (−67.8◦ W, −53.8◦ S), in the neighborhood of the austral tip of South America. This is a well-known GWhot spot from late autumn to early spring. Neither the source for this intense activity nor the extent of its effects have been yet fully elucidated. In the last years, different methods that combine diverse retrieval techniques have been presented in order to describe the three-dimensional (3-D) structure of observed GW, their propagation direction, their energy, and the MF that they carry. Assuming the presence of a dominant GWin the covered region, we develop here a technique that uses the temperature profiles from two simultaneously working close lidars to infer the vertical wavelength, ground-based frequency, and horizontal wavelength along the direction joining both instruments. If in addition within the time and spatial frame of both lidars there is also a retrieval from a satellite like SABER (Sounding of the Atmosphere using Broadband Emission Radiometry), then we show that it is possible to infer also the second horizontal wavelength and therefore reproduce the full 3-D GWstructure. Our method becomes verified with an example that includes tests that corroborate that both lidars and the satellite are sampling the same GW. The improvement of the Río Gallegos lidar performance could lead in the future to the observation of a wealth of cases during the GWhigh season. Between 8 and 14 hr (depending on the month) of continuous nighttime data could be obtained in the stratosphere and mesosphere in simultaneous soundings from both ground-based lidars. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/113735 |
url |
http://sedici.unlp.edu.ar/handle/10915/113735 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2333-5084 info:eu-repo/semantics/altIdentifier/doi/10.1029/2020EA001074 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616142445871104 |
score |
13.070432 |