Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism?
- Autores
- de la Torre, A.; Alexander, P.; Llamedo, P.; Menéndez, C.; Schmidt, T.; Wickert, J.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A significant wave activity (WA) in the upper troposphere and lower stratosphere, mainly during winter, was detected at midlatitudes in the southern hemisphere (30-40S) above the Andes Range, from an analysis of Global Positioning System Radio Occultation (GPS RO) temperature profiles retrieved by CHAMP (CHAllenging Mini-satellite Payload) and SAC-C (Satélite de Aplicaciones Científicas-C) Low Earth Orbit (LEO) satellites, between May 2001 and February 2006. The possible main gravity wave sources in this region are: i) orographic forcing, ii) geostrophic adjustment and iii) deep convection. The available vertical resolution of GPS RO soundings does not rule out any of these alternatives. Based on satellite imaginary, the WA enhancements cannot be attributed to deep convection events. Inertia-gravity waves (IGWs) could be generated after a geostrophic adjustment process, following a perturbation of the zonal jet situated above the Andes Mountains by mountain waves (MWs). The monthly WA intensity follows the zonal wind velocity strength according to its seasonal variability at jet altitudes. As the GPS-LEO lines of sight are roughly meridionally aligned and the morphology of the Andes at middle latitudes is predominantly north-south, it was possible to detect MWs as well as IGWs from GPS RO temperature profiles. This characteristic does not apply for other mountain range alignments. From the analysis of a numerical simulation at the time and location of a single RO event with very strong WA, two main modes of oscillation with horizontal wavelength around 40 and 200 km were identified. The first one is attributed to a MW and the second one to an IGW. Copyright 2006 by the American Geophysical Union.
Fil:de la Torre, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Alexander, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Llamedo, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Menéndez, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Geophys. Res. Lett. 2006;33(24)
- Materia
-
Atmospheric temperature
Global positioning system
Jets
Numerical analysis
Troposphere
Upper atmosphere
Weather satellites
Wind
Challenging mini-satellite payload
Low earth orbit
Radio occultation
Gravity waves
geostrophic flow
GPS
gravity wave
numerical method
satellite imagery
Southern Hemisphere
stratosphere
temperature profile
troposphere
wavelength
winter
zonal wind - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00948276_v33_n24_p_delaTorre
Ver los metadatos del registro completo
id |
BDUBAFCEN_27049251005ffe0ca33c6217504f53b4 |
---|---|
oai_identifier_str |
paperaa:paper_00948276_v33_n24_p_delaTorre |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism?de la Torre, A.Alexander, P.Llamedo, P.Menéndez, C.Schmidt, T.Wickert, J.Atmospheric temperatureGlobal positioning systemJetsNumerical analysisTroposphereUpper atmosphereWeather satellitesWindChallenging mini-satellite payloadLow earth orbitRadio occultationGravity wavesgeostrophic flowGPSgravity wavenumerical methodsatellite imagerySouthern Hemispherestratospheretemperature profiletropospherewavelengthwinterzonal windA significant wave activity (WA) in the upper troposphere and lower stratosphere, mainly during winter, was detected at midlatitudes in the southern hemisphere (30-40S) above the Andes Range, from an analysis of Global Positioning System Radio Occultation (GPS RO) temperature profiles retrieved by CHAMP (CHAllenging Mini-satellite Payload) and SAC-C (Satélite de Aplicaciones Científicas-C) Low Earth Orbit (LEO) satellites, between May 2001 and February 2006. The possible main gravity wave sources in this region are: i) orographic forcing, ii) geostrophic adjustment and iii) deep convection. The available vertical resolution of GPS RO soundings does not rule out any of these alternatives. Based on satellite imaginary, the WA enhancements cannot be attributed to deep convection events. Inertia-gravity waves (IGWs) could be generated after a geostrophic adjustment process, following a perturbation of the zonal jet situated above the Andes Mountains by mountain waves (MWs). The monthly WA intensity follows the zonal wind velocity strength according to its seasonal variability at jet altitudes. As the GPS-LEO lines of sight are roughly meridionally aligned and the morphology of the Andes at middle latitudes is predominantly north-south, it was possible to detect MWs as well as IGWs from GPS RO temperature profiles. This characteristic does not apply for other mountain range alignments. From the analysis of a numerical simulation at the time and location of a single RO event with very strong WA, two main modes of oscillation with horizontal wavelength around 40 and 200 km were identified. The first one is attributed to a MW and the second one to an IGW. Copyright 2006 by the American Geophysical Union.Fil:de la Torre, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Alexander, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Llamedo, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Menéndez, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00948276_v33_n24_p_delaTorreGeophys. Res. Lett. 2006;33(24)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_00948276_v33_n24_p_delaTorreInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.489Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism? |
title |
Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism? |
spellingShingle |
Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism? de la Torre, A. Atmospheric temperature Global positioning system Jets Numerical analysis Troposphere Upper atmosphere Weather satellites Wind Challenging mini-satellite payload Low earth orbit Radio occultation Gravity waves geostrophic flow GPS gravity wave numerical method satellite imagery Southern Hemisphere stratosphere temperature profile troposphere wavelength winter zonal wind |
title_short |
Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism? |
title_full |
Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism? |
title_fullStr |
Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism? |
title_full_unstemmed |
Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism? |
title_sort |
Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism? |
dc.creator.none.fl_str_mv |
de la Torre, A. Alexander, P. Llamedo, P. Menéndez, C. Schmidt, T. Wickert, J. |
author |
de la Torre, A. |
author_facet |
de la Torre, A. Alexander, P. Llamedo, P. Menéndez, C. Schmidt, T. Wickert, J. |
author_role |
author |
author2 |
Alexander, P. Llamedo, P. Menéndez, C. Schmidt, T. Wickert, J. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Atmospheric temperature Global positioning system Jets Numerical analysis Troposphere Upper atmosphere Weather satellites Wind Challenging mini-satellite payload Low earth orbit Radio occultation Gravity waves geostrophic flow GPS gravity wave numerical method satellite imagery Southern Hemisphere stratosphere temperature profile troposphere wavelength winter zonal wind |
topic |
Atmospheric temperature Global positioning system Jets Numerical analysis Troposphere Upper atmosphere Weather satellites Wind Challenging mini-satellite payload Low earth orbit Radio occultation Gravity waves geostrophic flow GPS gravity wave numerical method satellite imagery Southern Hemisphere stratosphere temperature profile troposphere wavelength winter zonal wind |
dc.description.none.fl_txt_mv |
A significant wave activity (WA) in the upper troposphere and lower stratosphere, mainly during winter, was detected at midlatitudes in the southern hemisphere (30-40S) above the Andes Range, from an analysis of Global Positioning System Radio Occultation (GPS RO) temperature profiles retrieved by CHAMP (CHAllenging Mini-satellite Payload) and SAC-C (Satélite de Aplicaciones Científicas-C) Low Earth Orbit (LEO) satellites, between May 2001 and February 2006. The possible main gravity wave sources in this region are: i) orographic forcing, ii) geostrophic adjustment and iii) deep convection. The available vertical resolution of GPS RO soundings does not rule out any of these alternatives. Based on satellite imaginary, the WA enhancements cannot be attributed to deep convection events. Inertia-gravity waves (IGWs) could be generated after a geostrophic adjustment process, following a perturbation of the zonal jet situated above the Andes Mountains by mountain waves (MWs). The monthly WA intensity follows the zonal wind velocity strength according to its seasonal variability at jet altitudes. As the GPS-LEO lines of sight are roughly meridionally aligned and the morphology of the Andes at middle latitudes is predominantly north-south, it was possible to detect MWs as well as IGWs from GPS RO temperature profiles. This characteristic does not apply for other mountain range alignments. From the analysis of a numerical simulation at the time and location of a single RO event with very strong WA, two main modes of oscillation with horizontal wavelength around 40 and 200 km were identified. The first one is attributed to a MW and the second one to an IGW. Copyright 2006 by the American Geophysical Union. Fil:de la Torre, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Alexander, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Llamedo, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Menéndez, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
A significant wave activity (WA) in the upper troposphere and lower stratosphere, mainly during winter, was detected at midlatitudes in the southern hemisphere (30-40S) above the Andes Range, from an analysis of Global Positioning System Radio Occultation (GPS RO) temperature profiles retrieved by CHAMP (CHAllenging Mini-satellite Payload) and SAC-C (Satélite de Aplicaciones Científicas-C) Low Earth Orbit (LEO) satellites, between May 2001 and February 2006. The possible main gravity wave sources in this region are: i) orographic forcing, ii) geostrophic adjustment and iii) deep convection. The available vertical resolution of GPS RO soundings does not rule out any of these alternatives. Based on satellite imaginary, the WA enhancements cannot be attributed to deep convection events. Inertia-gravity waves (IGWs) could be generated after a geostrophic adjustment process, following a perturbation of the zonal jet situated above the Andes Mountains by mountain waves (MWs). The monthly WA intensity follows the zonal wind velocity strength according to its seasonal variability at jet altitudes. As the GPS-LEO lines of sight are roughly meridionally aligned and the morphology of the Andes at middle latitudes is predominantly north-south, it was possible to detect MWs as well as IGWs from GPS RO temperature profiles. This characteristic does not apply for other mountain range alignments. From the analysis of a numerical simulation at the time and location of a single RO event with very strong WA, two main modes of oscillation with horizontal wavelength around 40 and 200 km were identified. The first one is attributed to a MW and the second one to an IGW. Copyright 2006 by the American Geophysical Union. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00948276_v33_n24_p_delaTorre |
url |
http://hdl.handle.net/20.500.12110/paper_00948276_v33_n24_p_delaTorre |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Geophys. Res. Lett. 2006;33(24) reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618740306542592 |
score |
13.070432 |