Bio-inspired nanocatalysts for the oxygen reduction reaction
- Autores
- Grumelli, Doris Elda; Wurtser, Benjamin; Stepanow, Sabastian; Kern, Klaus
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - Materia
-
Física
Nanoscale materials
STM
UHV
Electrocatalysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/104632
Ver los metadatos del registro completo
id |
SEDICI_7976530ffca1d6c98bbab33952caadf5 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/104632 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Bio-inspired nanocatalysts for the oxygen reduction reactionGrumelli, Doris EldaWurtser, BenjaminStepanow, SabastianKern, KlausFísicaNanoscale materialsSTMUHVElectrocatalysisElectrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/104632enginfo:eu-repo/semantics/altIdentifier/url/http://hdl.handle.net/11336/5313info:eu-repo/semantics/altIdentifier/issn/2041-1723info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms3904info:eu-repo/semantics/altIdentifier/hdl/11336/5313info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:54:55Zoai:sedici.unlp.edu.ar:10915/104632Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:54:56.3SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Bio-inspired nanocatalysts for the oxygen reduction reaction |
title |
Bio-inspired nanocatalysts for the oxygen reduction reaction |
spellingShingle |
Bio-inspired nanocatalysts for the oxygen reduction reaction Grumelli, Doris Elda Física Nanoscale materials STM UHV Electrocatalysis |
title_short |
Bio-inspired nanocatalysts for the oxygen reduction reaction |
title_full |
Bio-inspired nanocatalysts for the oxygen reduction reaction |
title_fullStr |
Bio-inspired nanocatalysts for the oxygen reduction reaction |
title_full_unstemmed |
Bio-inspired nanocatalysts for the oxygen reduction reaction |
title_sort |
Bio-inspired nanocatalysts for the oxygen reduction reaction |
dc.creator.none.fl_str_mv |
Grumelli, Doris Elda Wurtser, Benjamin Stepanow, Sabastian Kern, Klaus |
author |
Grumelli, Doris Elda |
author_facet |
Grumelli, Doris Elda Wurtser, Benjamin Stepanow, Sabastian Kern, Klaus |
author_role |
author |
author2 |
Wurtser, Benjamin Stepanow, Sabastian Kern, Klaus |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Física Nanoscale materials STM UHV Electrocatalysis |
topic |
Física Nanoscale materials STM UHV Electrocatalysis |
dc.description.none.fl_txt_mv |
Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
description |
Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/104632 |
url |
http://sedici.unlp.edu.ar/handle/10915/104632 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://hdl.handle.net/11336/5313 info:eu-repo/semantics/altIdentifier/issn/2041-1723 info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms3904 info:eu-repo/semantics/altIdentifier/hdl/11336/5313 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260435719421952 |
score |
13.13397 |