Bio-inspired nanocatalysts for the oxygen reduction reaction

Autores
Grumelli, Doris Elda; Wurtser, Benjamin; Stepanow, Sabastian; Kern, Klaus
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Física
Nanoscale materials
STM
UHV
Electrocatalysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/104632

id SEDICI_7976530ffca1d6c98bbab33952caadf5
oai_identifier_str oai:sedici.unlp.edu.ar:10915/104632
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Bio-inspired nanocatalysts for the oxygen reduction reactionGrumelli, Doris EldaWurtser, BenjaminStepanow, SabastianKern, KlausFísicaNanoscale materialsSTMUHVElectrocatalysisElectrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/104632enginfo:eu-repo/semantics/altIdentifier/url/http://hdl.handle.net/11336/5313info:eu-repo/semantics/altIdentifier/issn/2041-1723info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms3904info:eu-repo/semantics/altIdentifier/hdl/11336/5313info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:54:55Zoai:sedici.unlp.edu.ar:10915/104632Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:54:56.3SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Bio-inspired nanocatalysts for the oxygen reduction reaction
title Bio-inspired nanocatalysts for the oxygen reduction reaction
spellingShingle Bio-inspired nanocatalysts for the oxygen reduction reaction
Grumelli, Doris Elda
Física
Nanoscale materials
STM
UHV
Electrocatalysis
title_short Bio-inspired nanocatalysts for the oxygen reduction reaction
title_full Bio-inspired nanocatalysts for the oxygen reduction reaction
title_fullStr Bio-inspired nanocatalysts for the oxygen reduction reaction
title_full_unstemmed Bio-inspired nanocatalysts for the oxygen reduction reaction
title_sort Bio-inspired nanocatalysts for the oxygen reduction reaction
dc.creator.none.fl_str_mv Grumelli, Doris Elda
Wurtser, Benjamin
Stepanow, Sabastian
Kern, Klaus
author Grumelli, Doris Elda
author_facet Grumelli, Doris Elda
Wurtser, Benjamin
Stepanow, Sabastian
Kern, Klaus
author_role author
author2 Wurtser, Benjamin
Stepanow, Sabastian
Kern, Klaus
author2_role author
author
author
dc.subject.none.fl_str_mv Física
Nanoscale materials
STM
UHV
Electrocatalysis
topic Física
Nanoscale materials
STM
UHV
Electrocatalysis
dc.description.none.fl_txt_mv Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.
publishDate 2013
dc.date.none.fl_str_mv 2013-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/104632
url http://sedici.unlp.edu.ar/handle/10915/104632
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://hdl.handle.net/11336/5313
info:eu-repo/semantics/altIdentifier/issn/2041-1723
info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms3904
info:eu-repo/semantics/altIdentifier/hdl/11336/5313
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260435719421952
score 13.13397