Enhancement of electrocatalysis through magnetic field effects on mass transport

Autores
Vensaus, Priscila; Liang, Yunchang; Ansermet, Jean Philippe; Soler Illia, Galo Juan de Avila Arturo; Lingenfelder, Magalí Alejandra
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Magnetic field effects on electrocatalysis have recently gained attention due to the substantial enhancement of the oxygen evolution reaction (OER) on ferromagnetic catalysts. When detecting an enhanced catalytic activity, the effect of magnetic fields on mass transport must be assessed. In this study, we employ a specifically designed magneto-electrochemical system and non-magnetic electrodes to quantify magnetic field effects. Our findings reveal a marginal enhancement in reactions with high reactant availability, such as the OER, whereas substantial boosts exceeding 50% are observed in diffusion limited reactions, exemplified by the oxygen reduction reaction (ORR). Direct visualization and quantification of the whirling motion of ions under a magnetic field underscore the importance of Lorentz forces acting on the electrolyte ions, and demonstrate that bubbles’ movement is a secondary phenomenon. Our results advance the fundamental understanding of magnetic fields in electrocatalysis and unveil new prospects for developing more efficient and sustainable energy conversion technologies.
Fil: Vensaus, Priscila. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. École Polytechnique Fédérale de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Liang, Yunchang. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; Francia
Fil: Ansermet, Jean Philippe. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; Francia
Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lingenfelder, Magalí Alejandra. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; Francia
Materia
ELECTROCATALYSIS
ENERGY
MATERIALS
SURFACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/238546

id CONICETDig_83d843b1afb2cd37e48f5fb9ce10da0e
oai_identifier_str oai:ri.conicet.gov.ar:11336/238546
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Enhancement of electrocatalysis through magnetic field effects on mass transportVensaus, PriscilaLiang, YunchangAnsermet, Jean PhilippeSoler Illia, Galo Juan de Avila ArturoLingenfelder, Magalí AlejandraELECTROCATALYSISENERGYMATERIALSSURFACEShttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Magnetic field effects on electrocatalysis have recently gained attention due to the substantial enhancement of the oxygen evolution reaction (OER) on ferromagnetic catalysts. When detecting an enhanced catalytic activity, the effect of magnetic fields on mass transport must be assessed. In this study, we employ a specifically designed magneto-electrochemical system and non-magnetic electrodes to quantify magnetic field effects. Our findings reveal a marginal enhancement in reactions with high reactant availability, such as the OER, whereas substantial boosts exceeding 50% are observed in diffusion limited reactions, exemplified by the oxygen reduction reaction (ORR). Direct visualization and quantification of the whirling motion of ions under a magnetic field underscore the importance of Lorentz forces acting on the electrolyte ions, and demonstrate that bubbles’ movement is a secondary phenomenon. Our results advance the fundamental understanding of magnetic fields in electrocatalysis and unveil new prospects for developing more efficient and sustainable energy conversion technologies.Fil: Vensaus, Priscila. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. École Polytechnique Fédérale de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Liang, Yunchang. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; FranciaFil: Ansermet, Jean Philippe. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; FranciaFil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lingenfelder, Magalí Alejandra. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; FranciaNature Publishing Group2024-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/238546Vensaus, Priscila; Liang, Yunchang; Ansermet, Jean Philippe; Soler Illia, Galo Juan de Avila Arturo; Lingenfelder, Magalí Alejandra; Enhancement of electrocatalysis through magnetic field effects on mass transport; Nature Publishing Group; Nature Communications; 15; 1; 4-2024; 1-112041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-024-46980-8info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-024-46980-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:46Zoai:ri.conicet.gov.ar:11336/238546instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:47.216CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Enhancement of electrocatalysis through magnetic field effects on mass transport
title Enhancement of electrocatalysis through magnetic field effects on mass transport
spellingShingle Enhancement of electrocatalysis through magnetic field effects on mass transport
Vensaus, Priscila
ELECTROCATALYSIS
ENERGY
MATERIALS
SURFACES
title_short Enhancement of electrocatalysis through magnetic field effects on mass transport
title_full Enhancement of electrocatalysis through magnetic field effects on mass transport
title_fullStr Enhancement of electrocatalysis through magnetic field effects on mass transport
title_full_unstemmed Enhancement of electrocatalysis through magnetic field effects on mass transport
title_sort Enhancement of electrocatalysis through magnetic field effects on mass transport
dc.creator.none.fl_str_mv Vensaus, Priscila
Liang, Yunchang
Ansermet, Jean Philippe
Soler Illia, Galo Juan de Avila Arturo
Lingenfelder, Magalí Alejandra
author Vensaus, Priscila
author_facet Vensaus, Priscila
Liang, Yunchang
Ansermet, Jean Philippe
Soler Illia, Galo Juan de Avila Arturo
Lingenfelder, Magalí Alejandra
author_role author
author2 Liang, Yunchang
Ansermet, Jean Philippe
Soler Illia, Galo Juan de Avila Arturo
Lingenfelder, Magalí Alejandra
author2_role author
author
author
author
dc.subject.none.fl_str_mv ELECTROCATALYSIS
ENERGY
MATERIALS
SURFACES
topic ELECTROCATALYSIS
ENERGY
MATERIALS
SURFACES
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Magnetic field effects on electrocatalysis have recently gained attention due to the substantial enhancement of the oxygen evolution reaction (OER) on ferromagnetic catalysts. When detecting an enhanced catalytic activity, the effect of magnetic fields on mass transport must be assessed. In this study, we employ a specifically designed magneto-electrochemical system and non-magnetic electrodes to quantify magnetic field effects. Our findings reveal a marginal enhancement in reactions with high reactant availability, such as the OER, whereas substantial boosts exceeding 50% are observed in diffusion limited reactions, exemplified by the oxygen reduction reaction (ORR). Direct visualization and quantification of the whirling motion of ions under a magnetic field underscore the importance of Lorentz forces acting on the electrolyte ions, and demonstrate that bubbles’ movement is a secondary phenomenon. Our results advance the fundamental understanding of magnetic fields in electrocatalysis and unveil new prospects for developing more efficient and sustainable energy conversion technologies.
Fil: Vensaus, Priscila. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. École Polytechnique Fédérale de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Liang, Yunchang. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; Francia
Fil: Ansermet, Jean Philippe. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; Francia
Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lingenfelder, Magalí Alejandra. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; Francia
description Magnetic field effects on electrocatalysis have recently gained attention due to the substantial enhancement of the oxygen evolution reaction (OER) on ferromagnetic catalysts. When detecting an enhanced catalytic activity, the effect of magnetic fields on mass transport must be assessed. In this study, we employ a specifically designed magneto-electrochemical system and non-magnetic electrodes to quantify magnetic field effects. Our findings reveal a marginal enhancement in reactions with high reactant availability, such as the OER, whereas substantial boosts exceeding 50% are observed in diffusion limited reactions, exemplified by the oxygen reduction reaction (ORR). Direct visualization and quantification of the whirling motion of ions under a magnetic field underscore the importance of Lorentz forces acting on the electrolyte ions, and demonstrate that bubbles’ movement is a secondary phenomenon. Our results advance the fundamental understanding of magnetic fields in electrocatalysis and unveil new prospects for developing more efficient and sustainable energy conversion technologies.
publishDate 2024
dc.date.none.fl_str_mv 2024-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/238546
Vensaus, Priscila; Liang, Yunchang; Ansermet, Jean Philippe; Soler Illia, Galo Juan de Avila Arturo; Lingenfelder, Magalí Alejandra; Enhancement of electrocatalysis through magnetic field effects on mass transport; Nature Publishing Group; Nature Communications; 15; 1; 4-2024; 1-11
2041-1723
CONICET Digital
CONICET
url http://hdl.handle.net/11336/238546
identifier_str_mv Vensaus, Priscila; Liang, Yunchang; Ansermet, Jean Philippe; Soler Illia, Galo Juan de Avila Arturo; Lingenfelder, Magalí Alejandra; Enhancement of electrocatalysis through magnetic field effects on mass transport; Nature Publishing Group; Nature Communications; 15; 1; 4-2024; 1-11
2041-1723
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-024-46980-8
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-024-46980-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269974054305792
score 13.13397