Enhancement of electrocatalysis through magnetic field effects on mass transport
- Autores
- Vensaus, Priscila; Liang, Yunchang; Ansermet, Jean Philippe; Soler Illia, Galo Juan de Avila Arturo; Lingenfelder, Magalí Alejandra
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Magnetic field effects on electrocatalysis have recently gained attention due to the substantial enhancement of the oxygen evolution reaction (OER) on ferromagnetic catalysts. When detecting an enhanced catalytic activity, the effect of magnetic fields on mass transport must be assessed. In this study, we employ a specifically designed magneto-electrochemical system and non-magnetic electrodes to quantify magnetic field effects. Our findings reveal a marginal enhancement in reactions with high reactant availability, such as the OER, whereas substantial boosts exceeding 50% are observed in diffusion limited reactions, exemplified by the oxygen reduction reaction (ORR). Direct visualization and quantification of the whirling motion of ions under a magnetic field underscore the importance of Lorentz forces acting on the electrolyte ions, and demonstrate that bubbles’ movement is a secondary phenomenon. Our results advance the fundamental understanding of magnetic fields in electrocatalysis and unveil new prospects for developing more efficient and sustainable energy conversion technologies.
Fil: Vensaus, Priscila. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. École Polytechnique Fédérale de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Liang, Yunchang. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; Francia
Fil: Ansermet, Jean Philippe. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; Francia
Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lingenfelder, Magalí Alejandra. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; Francia - Materia
-
ELECTROCATALYSIS
ENERGY
MATERIALS
SURFACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/238546
Ver los metadatos del registro completo
id |
CONICETDig_83d843b1afb2cd37e48f5fb9ce10da0e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/238546 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Enhancement of electrocatalysis through magnetic field effects on mass transportVensaus, PriscilaLiang, YunchangAnsermet, Jean PhilippeSoler Illia, Galo Juan de Avila ArturoLingenfelder, Magalí AlejandraELECTROCATALYSISENERGYMATERIALSSURFACEShttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Magnetic field effects on electrocatalysis have recently gained attention due to the substantial enhancement of the oxygen evolution reaction (OER) on ferromagnetic catalysts. When detecting an enhanced catalytic activity, the effect of magnetic fields on mass transport must be assessed. In this study, we employ a specifically designed magneto-electrochemical system and non-magnetic electrodes to quantify magnetic field effects. Our findings reveal a marginal enhancement in reactions with high reactant availability, such as the OER, whereas substantial boosts exceeding 50% are observed in diffusion limited reactions, exemplified by the oxygen reduction reaction (ORR). Direct visualization and quantification of the whirling motion of ions under a magnetic field underscore the importance of Lorentz forces acting on the electrolyte ions, and demonstrate that bubbles’ movement is a secondary phenomenon. Our results advance the fundamental understanding of magnetic fields in electrocatalysis and unveil new prospects for developing more efficient and sustainable energy conversion technologies.Fil: Vensaus, Priscila. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. École Polytechnique Fédérale de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Liang, Yunchang. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; FranciaFil: Ansermet, Jean Philippe. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; FranciaFil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lingenfelder, Magalí Alejandra. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; FranciaNature Publishing Group2024-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/238546Vensaus, Priscila; Liang, Yunchang; Ansermet, Jean Philippe; Soler Illia, Galo Juan de Avila Arturo; Lingenfelder, Magalí Alejandra; Enhancement of electrocatalysis through magnetic field effects on mass transport; Nature Publishing Group; Nature Communications; 15; 1; 4-2024; 1-112041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-024-46980-8info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-024-46980-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:46Zoai:ri.conicet.gov.ar:11336/238546instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:47.216CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Enhancement of electrocatalysis through magnetic field effects on mass transport |
title |
Enhancement of electrocatalysis through magnetic field effects on mass transport |
spellingShingle |
Enhancement of electrocatalysis through magnetic field effects on mass transport Vensaus, Priscila ELECTROCATALYSIS ENERGY MATERIALS SURFACES |
title_short |
Enhancement of electrocatalysis through magnetic field effects on mass transport |
title_full |
Enhancement of electrocatalysis through magnetic field effects on mass transport |
title_fullStr |
Enhancement of electrocatalysis through magnetic field effects on mass transport |
title_full_unstemmed |
Enhancement of electrocatalysis through magnetic field effects on mass transport |
title_sort |
Enhancement of electrocatalysis through magnetic field effects on mass transport |
dc.creator.none.fl_str_mv |
Vensaus, Priscila Liang, Yunchang Ansermet, Jean Philippe Soler Illia, Galo Juan de Avila Arturo Lingenfelder, Magalí Alejandra |
author |
Vensaus, Priscila |
author_facet |
Vensaus, Priscila Liang, Yunchang Ansermet, Jean Philippe Soler Illia, Galo Juan de Avila Arturo Lingenfelder, Magalí Alejandra |
author_role |
author |
author2 |
Liang, Yunchang Ansermet, Jean Philippe Soler Illia, Galo Juan de Avila Arturo Lingenfelder, Magalí Alejandra |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
ELECTROCATALYSIS ENERGY MATERIALS SURFACES |
topic |
ELECTROCATALYSIS ENERGY MATERIALS SURFACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Magnetic field effects on electrocatalysis have recently gained attention due to the substantial enhancement of the oxygen evolution reaction (OER) on ferromagnetic catalysts. When detecting an enhanced catalytic activity, the effect of magnetic fields on mass transport must be assessed. In this study, we employ a specifically designed magneto-electrochemical system and non-magnetic electrodes to quantify magnetic field effects. Our findings reveal a marginal enhancement in reactions with high reactant availability, such as the OER, whereas substantial boosts exceeding 50% are observed in diffusion limited reactions, exemplified by the oxygen reduction reaction (ORR). Direct visualization and quantification of the whirling motion of ions under a magnetic field underscore the importance of Lorentz forces acting on the electrolyte ions, and demonstrate that bubbles’ movement is a secondary phenomenon. Our results advance the fundamental understanding of magnetic fields in electrocatalysis and unveil new prospects for developing more efficient and sustainable energy conversion technologies. Fil: Vensaus, Priscila. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. École Polytechnique Fédérale de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Liang, Yunchang. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; Francia Fil: Ansermet, Jean Philippe. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; Francia Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lingenfelder, Magalí Alejandra. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; Francia |
description |
Magnetic field effects on electrocatalysis have recently gained attention due to the substantial enhancement of the oxygen evolution reaction (OER) on ferromagnetic catalysts. When detecting an enhanced catalytic activity, the effect of magnetic fields on mass transport must be assessed. In this study, we employ a specifically designed magneto-electrochemical system and non-magnetic electrodes to quantify magnetic field effects. Our findings reveal a marginal enhancement in reactions with high reactant availability, such as the OER, whereas substantial boosts exceeding 50% are observed in diffusion limited reactions, exemplified by the oxygen reduction reaction (ORR). Direct visualization and quantification of the whirling motion of ions under a magnetic field underscore the importance of Lorentz forces acting on the electrolyte ions, and demonstrate that bubbles’ movement is a secondary phenomenon. Our results advance the fundamental understanding of magnetic fields in electrocatalysis and unveil new prospects for developing more efficient and sustainable energy conversion technologies. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/238546 Vensaus, Priscila; Liang, Yunchang; Ansermet, Jean Philippe; Soler Illia, Galo Juan de Avila Arturo; Lingenfelder, Magalí Alejandra; Enhancement of electrocatalysis through magnetic field effects on mass transport; Nature Publishing Group; Nature Communications; 15; 1; 4-2024; 1-11 2041-1723 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/238546 |
identifier_str_mv |
Vensaus, Priscila; Liang, Yunchang; Ansermet, Jean Philippe; Soler Illia, Galo Juan de Avila Arturo; Lingenfelder, Magalí Alejandra; Enhancement of electrocatalysis through magnetic field effects on mass transport; Nature Publishing Group; Nature Communications; 15; 1; 4-2024; 1-11 2041-1723 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-024-46980-8 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-024-46980-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269974054305792 |
score |
13.13397 |