Bio-inspired nanocatalysts for the oxygen reduction reaction

Autores
Grumelli, Doris Elda; Wurtser, Benjamin; Stepanow, Sabastian; Kern, Klaus
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.
Fil: Grumelli, Doris Elda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Max Planck Institute for Solid State Research; Alemania
Fil: Wurtser, Benjamin. Max Planck Institute for Solid State Research; Alemania
Fil: Stepanow, Sabastian. Max Planck Institute for Solid State Research; Alemania
Fil: Kern, Klaus. Max Planck Institute for Solid State Research; Alemania. Ecole Polytechnique Federale de Lausanne; Suiza
Materia
BIDEMENSIONAL METAL ORGANIC COORDINATION NETWORKS
STM
UHV
ELECTROCATALYSIS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5313

id CONICETDig_650f3882a1e3d4897db958553d4fbb9a
oai_identifier_str oai:ri.conicet.gov.ar:11336/5313
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bio-inspired nanocatalysts for the oxygen reduction reactionGrumelli, Doris EldaWurtser, BenjaminStepanow, SabastianKern, KlausBIDEMENSIONAL METAL ORGANIC COORDINATION NETWORKSSTMUHVELECTROCATALYSIShttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.Fil: Grumelli, Doris Elda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Max Planck Institute for Solid State Research; AlemaniaFil: Wurtser, Benjamin. Max Planck Institute for Solid State Research; AlemaniaFil: Stepanow, Sabastian. Max Planck Institute for Solid State Research; AlemaniaFil: Kern, Klaus. Max Planck Institute for Solid State Research; Alemania. Ecole Polytechnique Federale de Lausanne; SuizaNature2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5313Grumelli, Doris Elda; Wurtser, Benjamin; Stepanow, Sabastian; Kern, Klaus; Bio-inspired nanocatalysts for the oxygen reduction reaction; Nature; Nature Communications; 4; 2904; 12-2013; 1-62041-1723enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms3904info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/ncomms/2013/131205/ncomms3904/full/ncomms3904.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:29Zoai:ri.conicet.gov.ar:11336/5313instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:29.764CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bio-inspired nanocatalysts for the oxygen reduction reaction
title Bio-inspired nanocatalysts for the oxygen reduction reaction
spellingShingle Bio-inspired nanocatalysts for the oxygen reduction reaction
Grumelli, Doris Elda
BIDEMENSIONAL METAL ORGANIC COORDINATION NETWORKS
STM
UHV
ELECTROCATALYSIS
title_short Bio-inspired nanocatalysts for the oxygen reduction reaction
title_full Bio-inspired nanocatalysts for the oxygen reduction reaction
title_fullStr Bio-inspired nanocatalysts for the oxygen reduction reaction
title_full_unstemmed Bio-inspired nanocatalysts for the oxygen reduction reaction
title_sort Bio-inspired nanocatalysts for the oxygen reduction reaction
dc.creator.none.fl_str_mv Grumelli, Doris Elda
Wurtser, Benjamin
Stepanow, Sabastian
Kern, Klaus
author Grumelli, Doris Elda
author_facet Grumelli, Doris Elda
Wurtser, Benjamin
Stepanow, Sabastian
Kern, Klaus
author_role author
author2 Wurtser, Benjamin
Stepanow, Sabastian
Kern, Klaus
author2_role author
author
author
dc.subject.none.fl_str_mv BIDEMENSIONAL METAL ORGANIC COORDINATION NETWORKS
STM
UHV
ELECTROCATALYSIS
topic BIDEMENSIONAL METAL ORGANIC COORDINATION NETWORKS
STM
UHV
ELECTROCATALYSIS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.
Fil: Grumelli, Doris Elda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Max Planck Institute for Solid State Research; Alemania
Fil: Wurtser, Benjamin. Max Planck Institute for Solid State Research; Alemania
Fil: Stepanow, Sabastian. Max Planck Institute for Solid State Research; Alemania
Fil: Kern, Klaus. Max Planck Institute for Solid State Research; Alemania. Ecole Polytechnique Federale de Lausanne; Suiza
description Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.
publishDate 2013
dc.date.none.fl_str_mv 2013-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5313
Grumelli, Doris Elda; Wurtser, Benjamin; Stepanow, Sabastian; Kern, Klaus; Bio-inspired nanocatalysts for the oxygen reduction reaction; Nature; Nature Communications; 4; 2904; 12-2013; 1-6
2041-1723
url http://hdl.handle.net/11336/5313
identifier_str_mv Grumelli, Doris Elda; Wurtser, Benjamin; Stepanow, Sabastian; Kern, Klaus; Bio-inspired nanocatalysts for the oxygen reduction reaction; Nature; Nature Communications; 4; 2904; 12-2013; 1-6
2041-1723
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms3904
info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/ncomms/2013/131205/ncomms3904/full/ncomms3904.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature
publisher.none.fl_str_mv Nature
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270047166267392
score 13.13397