Bio-inspired nanocatalysts for the oxygen reduction reaction
- Autores
- Grumelli, Doris Elda; Wurtser, Benjamin; Stepanow, Sabastian; Kern, Klaus
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.
Fil: Grumelli, Doris Elda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Max Planck Institute for Solid State Research; Alemania
Fil: Wurtser, Benjamin. Max Planck Institute for Solid State Research; Alemania
Fil: Stepanow, Sabastian. Max Planck Institute for Solid State Research; Alemania
Fil: Kern, Klaus. Max Planck Institute for Solid State Research; Alemania. Ecole Polytechnique Federale de Lausanne; Suiza - Materia
-
BIDEMENSIONAL METAL ORGANIC COORDINATION NETWORKS
STM
UHV
ELECTROCATALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5313
Ver los metadatos del registro completo
id |
CONICETDig_650f3882a1e3d4897db958553d4fbb9a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5313 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bio-inspired nanocatalysts for the oxygen reduction reactionGrumelli, Doris EldaWurtser, BenjaminStepanow, SabastianKern, KlausBIDEMENSIONAL METAL ORGANIC COORDINATION NETWORKSSTMUHVELECTROCATALYSIShttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.Fil: Grumelli, Doris Elda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Max Planck Institute for Solid State Research; AlemaniaFil: Wurtser, Benjamin. Max Planck Institute for Solid State Research; AlemaniaFil: Stepanow, Sabastian. Max Planck Institute for Solid State Research; AlemaniaFil: Kern, Klaus. Max Planck Institute for Solid State Research; Alemania. Ecole Polytechnique Federale de Lausanne; SuizaNature2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5313Grumelli, Doris Elda; Wurtser, Benjamin; Stepanow, Sabastian; Kern, Klaus; Bio-inspired nanocatalysts for the oxygen reduction reaction; Nature; Nature Communications; 4; 2904; 12-2013; 1-62041-1723enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms3904info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/ncomms/2013/131205/ncomms3904/full/ncomms3904.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:29Zoai:ri.conicet.gov.ar:11336/5313instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:29.764CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bio-inspired nanocatalysts for the oxygen reduction reaction |
title |
Bio-inspired nanocatalysts for the oxygen reduction reaction |
spellingShingle |
Bio-inspired nanocatalysts for the oxygen reduction reaction Grumelli, Doris Elda BIDEMENSIONAL METAL ORGANIC COORDINATION NETWORKS STM UHV ELECTROCATALYSIS |
title_short |
Bio-inspired nanocatalysts for the oxygen reduction reaction |
title_full |
Bio-inspired nanocatalysts for the oxygen reduction reaction |
title_fullStr |
Bio-inspired nanocatalysts for the oxygen reduction reaction |
title_full_unstemmed |
Bio-inspired nanocatalysts for the oxygen reduction reaction |
title_sort |
Bio-inspired nanocatalysts for the oxygen reduction reaction |
dc.creator.none.fl_str_mv |
Grumelli, Doris Elda Wurtser, Benjamin Stepanow, Sabastian Kern, Klaus |
author |
Grumelli, Doris Elda |
author_facet |
Grumelli, Doris Elda Wurtser, Benjamin Stepanow, Sabastian Kern, Klaus |
author_role |
author |
author2 |
Wurtser, Benjamin Stepanow, Sabastian Kern, Klaus |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
BIDEMENSIONAL METAL ORGANIC COORDINATION NETWORKS STM UHV ELECTROCATALYSIS |
topic |
BIDEMENSIONAL METAL ORGANIC COORDINATION NETWORKS STM UHV ELECTROCATALYSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis. Fil: Grumelli, Doris Elda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Max Planck Institute for Solid State Research; Alemania Fil: Wurtser, Benjamin. Max Planck Institute for Solid State Research; Alemania Fil: Stepanow, Sabastian. Max Planck Institute for Solid State Research; Alemania Fil: Kern, Klaus. Max Planck Institute for Solid State Research; Alemania. Ecole Polytechnique Federale de Lausanne; Suiza |
description |
Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5313 Grumelli, Doris Elda; Wurtser, Benjamin; Stepanow, Sabastian; Kern, Klaus; Bio-inspired nanocatalysts for the oxygen reduction reaction; Nature; Nature Communications; 4; 2904; 12-2013; 1-6 2041-1723 |
url |
http://hdl.handle.net/11336/5313 |
identifier_str_mv |
Grumelli, Doris Elda; Wurtser, Benjamin; Stepanow, Sabastian; Kern, Klaus; Bio-inspired nanocatalysts for the oxygen reduction reaction; Nature; Nature Communications; 4; 2904; 12-2013; 1-6 2041-1723 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms3904 info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/ncomms/2013/131205/ncomms3904/full/ncomms3904.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature |
publisher.none.fl_str_mv |
Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270047166267392 |
score |
13.13397 |