Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems
- Autores
- Douglas, Jim; Santos, Juan Enrique; Sheen, Dongwoo; Ye, Xiu
- Año de publicación
- 1999
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Low-order nonconforming Galerkin methods will be analyzed for second-order elliptic equations subjected to Robin, Dirichlet, or Neumann boundary conditions. Both simplicial and rectangular elements will be considered in two and three dimensions. The simplicial elements will be based on P 1 , as for conforming elements; however, it is necessary to introduce new elements in the rectangular case. Optimal order error estimates are demonstrated in all cases with respect to a broken norm in H 1 (Ω) and in the Neumann and Robin cases in L 2 (Ω).
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Ciencias Astronómicas
Nonconforming Galerkin methods
Quadrilateral elements
Second order elliptic problems
Domain decomposition iterative methods - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/122845
Ver los metadatos del registro completo
id |
SEDICI_78438debf9f4f269258de9b64fbc4b1f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/122845 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problemsDouglas, JimSantos, Juan EnriqueSheen, DongwooYe, XiuCiencias AstronómicasNonconforming Galerkin methodsQuadrilateral elementsSecond order elliptic problemsDomain decomposition iterative methodsLow-order nonconforming Galerkin methods will be analyzed for second-order elliptic equations subjected to Robin, Dirichlet, or Neumann boundary conditions. Both simplicial and rectangular elements will be considered in two and three dimensions. The simplicial elements will be based on P 1 , as for conforming elements; however, it is necessary to introduce new elements in the rectangular case. Optimal order error estimates are demonstrated in all cases with respect to a broken norm in H 1 (Ω) and in the Neumann and Robin cases in L 2 (Ω).Facultad de Ciencias Astronómicas y Geofísicas1999info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf747-770http://sedici.unlp.edu.ar/handle/10915/122845enginfo:eu-repo/semantics/altIdentifier/issn/0764583xinfo:eu-repo/semantics/altIdentifier/issn/12903841info:eu-repo/semantics/altIdentifier/doi/10.1051/m2an:1999161info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:31:55Zoai:sedici.unlp.edu.ar:10915/122845Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:31:55.485SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems |
title |
Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems |
spellingShingle |
Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems Douglas, Jim Ciencias Astronómicas Nonconforming Galerkin methods Quadrilateral elements Second order elliptic problems Domain decomposition iterative methods |
title_short |
Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems |
title_full |
Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems |
title_fullStr |
Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems |
title_full_unstemmed |
Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems |
title_sort |
Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems |
dc.creator.none.fl_str_mv |
Douglas, Jim Santos, Juan Enrique Sheen, Dongwoo Ye, Xiu |
author |
Douglas, Jim |
author_facet |
Douglas, Jim Santos, Juan Enrique Sheen, Dongwoo Ye, Xiu |
author_role |
author |
author2 |
Santos, Juan Enrique Sheen, Dongwoo Ye, Xiu |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Nonconforming Galerkin methods Quadrilateral elements Second order elliptic problems Domain decomposition iterative methods |
topic |
Ciencias Astronómicas Nonconforming Galerkin methods Quadrilateral elements Second order elliptic problems Domain decomposition iterative methods |
dc.description.none.fl_txt_mv |
Low-order nonconforming Galerkin methods will be analyzed for second-order elliptic equations subjected to Robin, Dirichlet, or Neumann boundary conditions. Both simplicial and rectangular elements will be considered in two and three dimensions. The simplicial elements will be based on P 1 , as for conforming elements; however, it is necessary to introduce new elements in the rectangular case. Optimal order error estimates are demonstrated in all cases with respect to a broken norm in H 1 (Ω) and in the Neumann and Robin cases in L 2 (Ω). Facultad de Ciencias Astronómicas y Geofísicas |
description |
Low-order nonconforming Galerkin methods will be analyzed for second-order elliptic equations subjected to Robin, Dirichlet, or Neumann boundary conditions. Both simplicial and rectangular elements will be considered in two and three dimensions. The simplicial elements will be based on P 1 , as for conforming elements; however, it is necessary to introduce new elements in the rectangular case. Optimal order error estimates are demonstrated in all cases with respect to a broken norm in H 1 (Ω) and in the Neumann and Robin cases in L 2 (Ω). |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/122845 |
url |
http://sedici.unlp.edu.ar/handle/10915/122845 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0764583x info:eu-repo/semantics/altIdentifier/issn/12903841 info:eu-repo/semantics/altIdentifier/doi/10.1051/m2an:1999161 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 747-770 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904426426138624 |
score |
12.993085 |