Color image segmentation using multispectral random field texture model & color content features

Autores
Hernandez, Orlando J.; Khotanzad, Alireza
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper describes a color texture-based image segmentation system. The color texture information is obtained via modeling with the Multispectral Simultaneous Auto Regressive (MSAR) random field model. The general color content characterized by ratios of sample color means is also used. The image is segmented into regions of uniform color texture using an unsupervised histogram clustering approach that utilizes the combination of MSAR and color features. The performance of the system is tested on two databases containing synthetic mosaics of natural textures and natural scenes, respectively
Facultad de Informática
Materia
Ciencias Informáticas
Color, shading, shadowing, and texture
Segmentation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/9495

id SEDICI_7825ec4d3025939d2aa3a10aa8d9025d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/9495
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Color image segmentation using multispectral random field texture model & color content featuresHernandez, Orlando J.Khotanzad, AlirezaCiencias InformáticasColor, shading, shadowing, and textureSegmentationThis paper describes a color texture-based image segmentation system. The color texture information is obtained via modeling with the Multispectral Simultaneous Auto Regressive (MSAR) random field model. The general color content characterized by ratios of sample color means is also used. The image is segmented into regions of uniform color texture using an unsupervised histogram clustering approach that utilizes the combination of MSAR and color features. The performance of the system is tested on two databases containing synthetic mosaics of natural textures and natural scenes, respectivelyFacultad de Informática2004-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf141-146http://sedici.unlp.edu.ar/handle/10915/9495enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct04-3.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:44Zoai:sedici.unlp.edu.ar:10915/9495Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:44.201SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Color image segmentation using multispectral random field texture model & color content features
title Color image segmentation using multispectral random field texture model & color content features
spellingShingle Color image segmentation using multispectral random field texture model & color content features
Hernandez, Orlando J.
Ciencias Informáticas
Color, shading, shadowing, and texture
Segmentation
title_short Color image segmentation using multispectral random field texture model & color content features
title_full Color image segmentation using multispectral random field texture model & color content features
title_fullStr Color image segmentation using multispectral random field texture model & color content features
title_full_unstemmed Color image segmentation using multispectral random field texture model & color content features
title_sort Color image segmentation using multispectral random field texture model & color content features
dc.creator.none.fl_str_mv Hernandez, Orlando J.
Khotanzad, Alireza
author Hernandez, Orlando J.
author_facet Hernandez, Orlando J.
Khotanzad, Alireza
author_role author
author2 Khotanzad, Alireza
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Color, shading, shadowing, and texture
Segmentation
topic Ciencias Informáticas
Color, shading, shadowing, and texture
Segmentation
dc.description.none.fl_txt_mv This paper describes a color texture-based image segmentation system. The color texture information is obtained via modeling with the Multispectral Simultaneous Auto Regressive (MSAR) random field model. The general color content characterized by ratios of sample color means is also used. The image is segmented into regions of uniform color texture using an unsupervised histogram clustering approach that utilizes the combination of MSAR and color features. The performance of the system is tested on two databases containing synthetic mosaics of natural textures and natural scenes, respectively
Facultad de Informática
description This paper describes a color texture-based image segmentation system. The color texture information is obtained via modeling with the Multispectral Simultaneous Auto Regressive (MSAR) random field model. The general color content characterized by ratios of sample color means is also used. The image is segmented into regions of uniform color texture using an unsupervised histogram clustering approach that utilizes the combination of MSAR and color features. The performance of the system is tested on two databases containing synthetic mosaics of natural textures and natural scenes, respectively
publishDate 2004
dc.date.none.fl_str_mv 2004-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/9495
url http://sedici.unlp.edu.ar/handle/10915/9495
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct04-3.pdf
info:eu-repo/semantics/altIdentifier/issn/1666-6038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.format.none.fl_str_mv application/pdf
141-146
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615757909983232
score 13.070432