Parallel backpropagation neural networks forTask allocation by means of PVM

Autores
Crespo, María Liz; Printista, Alicia Marcela; Piccoli, María Fabiana
Año de publicación
1998
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Features such as fast response, storage efficiency, fault tolerance and graceful degradation in face of scarce or spurious inputs make neural networks appropriate tools for Intelligent Computer Systems. A neural network is, by itself, an inherently parallel system where many, extremely simple, processing units work simultaneously in the same problem building up a computational device which possess adaptation (learning) and generalisation (recognition) abilities. Implementation of neural networks roughly involve at least three stages; design, training and testing. The second, being CPU intensive, is the one requiring most of the processing resources and depending on size and structure complexity the learning process can be extremely long. Thus, great effort has been done to develop parallel implementations intended for a reduction of learning time. Pattern partitioning is an approach to parallelise neural networks where the whole net is replicated in different processors and the weight changes owing to diverse training patterns are parallelised. This approach is the most suitable for a distributed architecture such as the one considered here. Incoming task allocation, as a previous step, is a fundamental service aiming for improving distributed system performance facilitating further dynamic load balancing. A Neural Network Device inserted into the kernel of a distributed system as an intelligent tool, allows to achieve automatic allocation of execution requests under some predefined performance criteria based on resource availability and incoming process requirements. This paper being, a twofold proposal, shows firstly, some design and implementation insights to build a system where decision support for load distribution is based on a neural network device and secondly a distributed implementation to provide parallel learning of neural networks using a pattern partitioning approach. In the latter case, some performance results of the parallelised approach for learning of backpropagation neural networks, are shown. This include a comparison of recall and generalisation abilities and speed-up when using a socket interface or PVM.
Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Informática
Distributed Systems
System architectures
Neural nets
PATTERN RECOGNITION
system architecture
distributed systems workload
parallelised neural networks
backpropagation
partitioning schemes
pattern partitioning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/24825

id SEDICI_7747d95e661ee05d34757ef031d4bb55
oai_identifier_str oai:sedici.unlp.edu.ar:10915/24825
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Parallel backpropagation neural networks forTask allocation by means of PVMCrespo, María LizPrintista, Alicia MarcelaPiccoli, María FabianaCiencias InformáticasInformáticaDistributed SystemsSystem architecturesNeural netsPATTERN RECOGNITIONsystem architecturedistributed systems workloadparallelised neural networksbackpropagationpartitioning schemespattern partitioningFeatures such as fast response, storage efficiency, fault tolerance and graceful degradation in face of scarce or spurious inputs make neural networks appropriate tools for Intelligent Computer Systems. A neural network is, by itself, an inherently parallel system where many, extremely simple, processing units work simultaneously in the same problem building up a computational device which possess adaptation (learning) and generalisation (recognition) abilities. Implementation of neural networks roughly involve at least three stages; design, training and testing. The second, being CPU intensive, is the one requiring most of the processing resources and depending on size and structure complexity the learning process can be extremely long. Thus, great effort has been done to develop parallel implementations intended for a reduction of learning time. Pattern partitioning is an approach to parallelise neural networks where the whole net is replicated in different processors and the weight changes owing to diverse training patterns are parallelised. This approach is the most suitable for a distributed architecture such as the one considered here. Incoming task allocation, as a previous step, is a fundamental service aiming for improving distributed system performance facilitating further dynamic load balancing. A Neural Network Device inserted into the kernel of a distributed system as an intelligent tool, allows to achieve automatic allocation of execution requests under some predefined performance criteria based on resource availability and incoming process requirements. This paper being, a twofold proposal, shows firstly, some design and implementation insights to build a system where decision support for load distribution is based on a neural network device and secondly a distributed implementation to provide parallel learning of neural networks using a pattern partitioning approach. In the latter case, some performance results of the parallelised approach for learning of backpropagation neural networks, are shown. This include a comparison of recall and generalisation abilities and speed-up when using a socket interface or PVM.Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)1998-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24825enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:48Zoai:sedici.unlp.edu.ar:10915/24825Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:49.08SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Parallel backpropagation neural networks forTask allocation by means of PVM
title Parallel backpropagation neural networks forTask allocation by means of PVM
spellingShingle Parallel backpropagation neural networks forTask allocation by means of PVM
Crespo, María Liz
Ciencias Informáticas
Informática
Distributed Systems
System architectures
Neural nets
PATTERN RECOGNITION
system architecture
distributed systems workload
parallelised neural networks
backpropagation
partitioning schemes
pattern partitioning
title_short Parallel backpropagation neural networks forTask allocation by means of PVM
title_full Parallel backpropagation neural networks forTask allocation by means of PVM
title_fullStr Parallel backpropagation neural networks forTask allocation by means of PVM
title_full_unstemmed Parallel backpropagation neural networks forTask allocation by means of PVM
title_sort Parallel backpropagation neural networks forTask allocation by means of PVM
dc.creator.none.fl_str_mv Crespo, María Liz
Printista, Alicia Marcela
Piccoli, María Fabiana
author Crespo, María Liz
author_facet Crespo, María Liz
Printista, Alicia Marcela
Piccoli, María Fabiana
author_role author
author2 Printista, Alicia Marcela
Piccoli, María Fabiana
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Informática
Distributed Systems
System architectures
Neural nets
PATTERN RECOGNITION
system architecture
distributed systems workload
parallelised neural networks
backpropagation
partitioning schemes
pattern partitioning
topic Ciencias Informáticas
Informática
Distributed Systems
System architectures
Neural nets
PATTERN RECOGNITION
system architecture
distributed systems workload
parallelised neural networks
backpropagation
partitioning schemes
pattern partitioning
dc.description.none.fl_txt_mv Features such as fast response, storage efficiency, fault tolerance and graceful degradation in face of scarce or spurious inputs make neural networks appropriate tools for Intelligent Computer Systems. A neural network is, by itself, an inherently parallel system where many, extremely simple, processing units work simultaneously in the same problem building up a computational device which possess adaptation (learning) and generalisation (recognition) abilities. Implementation of neural networks roughly involve at least three stages; design, training and testing. The second, being CPU intensive, is the one requiring most of the processing resources and depending on size and structure complexity the learning process can be extremely long. Thus, great effort has been done to develop parallel implementations intended for a reduction of learning time. Pattern partitioning is an approach to parallelise neural networks where the whole net is replicated in different processors and the weight changes owing to diverse training patterns are parallelised. This approach is the most suitable for a distributed architecture such as the one considered here. Incoming task allocation, as a previous step, is a fundamental service aiming for improving distributed system performance facilitating further dynamic load balancing. A Neural Network Device inserted into the kernel of a distributed system as an intelligent tool, allows to achieve automatic allocation of execution requests under some predefined performance criteria based on resource availability and incoming process requirements. This paper being, a twofold proposal, shows firstly, some design and implementation insights to build a system where decision support for load distribution is based on a neural network device and secondly a distributed implementation to provide parallel learning of neural networks using a pattern partitioning approach. In the latter case, some performance results of the parallelised approach for learning of backpropagation neural networks, are shown. This include a comparison of recall and generalisation abilities and speed-up when using a socket interface or PVM.
Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description Features such as fast response, storage efficiency, fault tolerance and graceful degradation in face of scarce or spurious inputs make neural networks appropriate tools for Intelligent Computer Systems. A neural network is, by itself, an inherently parallel system where many, extremely simple, processing units work simultaneously in the same problem building up a computational device which possess adaptation (learning) and generalisation (recognition) abilities. Implementation of neural networks roughly involve at least three stages; design, training and testing. The second, being CPU intensive, is the one requiring most of the processing resources and depending on size and structure complexity the learning process can be extremely long. Thus, great effort has been done to develop parallel implementations intended for a reduction of learning time. Pattern partitioning is an approach to parallelise neural networks where the whole net is replicated in different processors and the weight changes owing to diverse training patterns are parallelised. This approach is the most suitable for a distributed architecture such as the one considered here. Incoming task allocation, as a previous step, is a fundamental service aiming for improving distributed system performance facilitating further dynamic load balancing. A Neural Network Device inserted into the kernel of a distributed system as an intelligent tool, allows to achieve automatic allocation of execution requests under some predefined performance criteria based on resource availability and incoming process requirements. This paper being, a twofold proposal, shows firstly, some design and implementation insights to build a system where decision support for load distribution is based on a neural network device and secondly a distributed implementation to provide parallel learning of neural networks using a pattern partitioning approach. In the latter case, some performance results of the parallelised approach for learning of backpropagation neural networks, are shown. This include a comparison of recall and generalisation abilities and speed-up when using a socket interface or PVM.
publishDate 1998
dc.date.none.fl_str_mv 1998-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/24825
url http://sedici.unlp.edu.ar/handle/10915/24825
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260127408717824
score 13.13397