A parallel approach for backpropagation learning of neural networks
- Autores
- Crespo, María Liz; Piccoli, María Fabiana; Printista, Alicia Marcela; Gallard, Raúl Hector
- Año de publicación
- 1997
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Learning algorithms for neural networks involve CPU intensive processing and consequently great effort has been done to develop parallel implemetations intended for a reduction of learning time. This work briefly describes parallel schemes for a backpropagation algorithm and proposes a distributed system architecture for developing parallel training with a partition pattern scheme. Under this approach, weight changes are computed concurrently, exchanged between system components and adjusted accordingly until the whole parallel learning process is completed. Some comparative results are also shown.
Eje: Procesamiento distribuido y paralelo. Tratamiento de señales
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Neutral networks
parallelised backpropagation
partitioning schemes
pattern partitioning
system architecture
Architectures
Parallel
Neural nets
Distributed - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23892
Ver los metadatos del registro completo
id |
SEDICI_5453ebfb8d9b51f8c65c953afca513af |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23892 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A parallel approach for backpropagation learning of neural networksCrespo, María LizPiccoli, María FabianaPrintista, Alicia MarcelaGallard, Raúl HectorCiencias InformáticasNeutral networksparallelised backpropagationpartitioning schemespattern partitioningsystem architectureArchitecturesParallelNeural netsDistributedLearning algorithms for neural networks involve CPU intensive processing and consequently great effort has been done to develop parallel implemetations intended for a reduction of learning time. This work briefly describes parallel schemes for a backpropagation algorithm and proposes a distributed system architecture for developing parallel training with a partition pattern scheme. Under this approach, weight changes are computed concurrently, exchanged between system components and adjusted accordingly until the whole parallel learning process is completed. Some comparative results are also shown.Eje: Procesamiento distribuido y paralelo. Tratamiento de señalesRed de Universidades con Carreras en Informática (RedUNCI)1997info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23892enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:25Zoai:sedici.unlp.edu.ar:10915/23892Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:25.447SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A parallel approach for backpropagation learning of neural networks |
title |
A parallel approach for backpropagation learning of neural networks |
spellingShingle |
A parallel approach for backpropagation learning of neural networks Crespo, María Liz Ciencias Informáticas Neutral networks parallelised backpropagation partitioning schemes pattern partitioning system architecture Architectures Parallel Neural nets Distributed |
title_short |
A parallel approach for backpropagation learning of neural networks |
title_full |
A parallel approach for backpropagation learning of neural networks |
title_fullStr |
A parallel approach for backpropagation learning of neural networks |
title_full_unstemmed |
A parallel approach for backpropagation learning of neural networks |
title_sort |
A parallel approach for backpropagation learning of neural networks |
dc.creator.none.fl_str_mv |
Crespo, María Liz Piccoli, María Fabiana Printista, Alicia Marcela Gallard, Raúl Hector |
author |
Crespo, María Liz |
author_facet |
Crespo, María Liz Piccoli, María Fabiana Printista, Alicia Marcela Gallard, Raúl Hector |
author_role |
author |
author2 |
Piccoli, María Fabiana Printista, Alicia Marcela Gallard, Raúl Hector |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Neutral networks parallelised backpropagation partitioning schemes pattern partitioning system architecture Architectures Parallel Neural nets Distributed |
topic |
Ciencias Informáticas Neutral networks parallelised backpropagation partitioning schemes pattern partitioning system architecture Architectures Parallel Neural nets Distributed |
dc.description.none.fl_txt_mv |
Learning algorithms for neural networks involve CPU intensive processing and consequently great effort has been done to develop parallel implemetations intended for a reduction of learning time. This work briefly describes parallel schemes for a backpropagation algorithm and proposes a distributed system architecture for developing parallel training with a partition pattern scheme. Under this approach, weight changes are computed concurrently, exchanged between system components and adjusted accordingly until the whole parallel learning process is completed. Some comparative results are also shown. Eje: Procesamiento distribuido y paralelo. Tratamiento de señales Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Learning algorithms for neural networks involve CPU intensive processing and consequently great effort has been done to develop parallel implemetations intended for a reduction of learning time. This work briefly describes parallel schemes for a backpropagation algorithm and proposes a distributed system architecture for developing parallel training with a partition pattern scheme. Under this approach, weight changes are computed concurrently, exchanged between system components and adjusted accordingly until the whole parallel learning process is completed. Some comparative results are also shown. |
publishDate |
1997 |
dc.date.none.fl_str_mv |
1997 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23892 |
url |
http://sedici.unlp.edu.ar/handle/10915/23892 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260123316125696 |
score |
13.13397 |