La ley del óptimo técnico
- Autores
- Rafael, Alberto
- Año de publicación
- 1967
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The object of this article is to study the so-called Law of the Optimum Technician in relation to the continuous function of production. We presume that the production function is defined by the dimension interval of n ai<= vi <=bi, with ai>0, i=1,...,n where partial first continuous derivates are allowed, but the existence of partial second derivatives are not sought. We presume that marginal productivity x'i (vi) is first a positive monotony, increasing until it reaches a maximum, after which it is a decreasing monotony until it reaches a minimum of negative value, to later become an increasing negative monotony. Based on this we analytically deduce that the medium productivity curve xi(vi) in the different cases which may arise finally brings us to the needed condition, sufficient to fulfill the Law of the optimum technician. This is followed by a geometric interpretation of the question, and concludes by considering the special case of ai= 0.
Facultad de Ciencias Económicas - Materia
-
Ciencias Económicas
economía
productividad - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/3.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/8958
Ver los metadatos del registro completo
| id |
SEDICI_769b815c3015913a7f77a5a0c6b09390 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/8958 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
La ley del óptimo técnicoRafael, AlbertoCiencias EconómicaseconomíaproductividadThe object of this article is to study the so-called Law of the Optimum Technician in relation to the continuous function of production. We presume that the production function is defined by the dimension interval of n ai<= vi <=bi, with ai>0, i=1,...,n where partial first continuous derivates are allowed, but the existence of partial second derivatives are not sought. We presume that marginal productivity x'i (vi) is first a positive monotony, increasing until it reaches a maximum, after which it is a decreasing monotony until it reaches a minimum of negative value, to later become an increasing negative monotony. Based on this we analytically deduce that the medium productivity curve xi(vi) in the different cases which may arise finally brings us to the needed condition, sufficient to fulfill the Law of the optimum technician. This is followed by a geometric interpretation of the question, and concludes by considering the special case of ai= 0.Facultad de Ciencias Económicas1967-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf17-30http://sedici.unlp.edu.ar/handle/10915/8958spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/3.0/Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:32:07Zoai:sedici.unlp.edu.ar:10915/8958Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:32:07.586SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
La ley del óptimo técnico |
| title |
La ley del óptimo técnico |
| spellingShingle |
La ley del óptimo técnico Rafael, Alberto Ciencias Económicas economía productividad |
| title_short |
La ley del óptimo técnico |
| title_full |
La ley del óptimo técnico |
| title_fullStr |
La ley del óptimo técnico |
| title_full_unstemmed |
La ley del óptimo técnico |
| title_sort |
La ley del óptimo técnico |
| dc.creator.none.fl_str_mv |
Rafael, Alberto |
| author |
Rafael, Alberto |
| author_facet |
Rafael, Alberto |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Económicas economía productividad |
| topic |
Ciencias Económicas economía productividad |
| dc.description.none.fl_txt_mv |
The object of this article is to study the so-called Law of the Optimum Technician in relation to the continuous function of production. We presume that the production function is defined by the dimension interval of n ai<= vi <=bi, with ai>0, i=1,...,n where partial first continuous derivates are allowed, but the existence of partial second derivatives are not sought. We presume that marginal productivity x'i (vi) is first a positive monotony, increasing until it reaches a maximum, after which it is a decreasing monotony until it reaches a minimum of negative value, to later become an increasing negative monotony. Based on this we analytically deduce that the medium productivity curve xi(vi) in the different cases which may arise finally brings us to the needed condition, sufficient to fulfill the Law of the optimum technician. This is followed by a geometric interpretation of the question, and concludes by considering the special case of ai= 0. Facultad de Ciencias Económicas |
| description |
The object of this article is to study the so-called Law of the Optimum Technician in relation to the continuous function of production. We presume that the production function is defined by the dimension interval of n ai<= vi <=bi, with ai>0, i=1,...,n where partial first continuous derivates are allowed, but the existence of partial second derivatives are not sought. We presume that marginal productivity x'i (vi) is first a positive monotony, increasing until it reaches a maximum, after which it is a decreasing monotony until it reaches a minimum of negative value, to later become an increasing negative monotony. Based on this we analytically deduce that the medium productivity curve xi(vi) in the different cases which may arise finally brings us to the needed condition, sufficient to fulfill the Law of the optimum technician. This is followed by a geometric interpretation of the question, and concludes by considering the special case of ai= 0. |
| publishDate |
1967 |
| dc.date.none.fl_str_mv |
1967-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/8958 |
| url |
http://sedici.unlp.edu.ar/handle/10915/8958 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/ Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/ Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) |
| dc.format.none.fl_str_mv |
application/pdf 17-30 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846782738606063616 |
| score |
12.982451 |