La ley del óptimo técnico

Autores
Rafael, Alberto
Año de publicación
1967
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The object of this article is to study the so-called Law of the Optimum Technician in relation to the continuous function of production. We presume that the production function is defined by the dimension interval of n ai<= vi <=bi, with ai>0, i=1,...,n where partial first continuous derivates are allowed, but the existence of partial second derivatives are not sought. We presume that marginal productivity x'i (vi) is first a positive monotony, increasing until it reaches a maximum, after which it is a decreasing monotony until it reaches a minimum of negative value, to later become an increasing negative monotony. Based on this we analytically deduce that the medium productivity curve xi(vi) in the different cases which may arise finally brings us to the needed condition, sufficient to fulfill the Law of the optimum technician. This is followed by a geometric interpretation of the question, and concludes by considering the special case of ai= 0.
Facultad de Ciencias Económicas
Materia
Ciencias Económicas
economía
productividad
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/8958

id SEDICI_769b815c3015913a7f77a5a0c6b09390
oai_identifier_str oai:sedici.unlp.edu.ar:10915/8958
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling La ley del óptimo técnicoRafael, AlbertoCiencias EconómicaseconomíaproductividadThe object of this article is to study the so-called Law of the Optimum Technician in relation to the continuous function of production. We presume that the production function is defined by the dimension interval of n ai<= vi <=bi, with ai>0, i=1,...,n where partial first continuous derivates are allowed, but the existence of partial second derivatives are not sought. We presume that marginal productivity x'i (vi) is first a positive monotony, increasing until it reaches a maximum, after which it is a decreasing monotony until it reaches a minimum of negative value, to later become an increasing negative monotony. Based on this we analytically deduce that the medium productivity curve xi(vi) in the different cases which may arise finally brings us to the needed condition, sufficient to fulfill the Law of the optimum technician. This is followed by a geometric interpretation of the question, and concludes by considering the special case of ai= 0.Facultad de Ciencias Económicas1967-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf17-30http://sedici.unlp.edu.ar/handle/10915/8958spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/3.0/Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:32:07Zoai:sedici.unlp.edu.ar:10915/8958Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:32:07.586SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv La ley del óptimo técnico
title La ley del óptimo técnico
spellingShingle La ley del óptimo técnico
Rafael, Alberto
Ciencias Económicas
economía
productividad
title_short La ley del óptimo técnico
title_full La ley del óptimo técnico
title_fullStr La ley del óptimo técnico
title_full_unstemmed La ley del óptimo técnico
title_sort La ley del óptimo técnico
dc.creator.none.fl_str_mv Rafael, Alberto
author Rafael, Alberto
author_facet Rafael, Alberto
author_role author
dc.subject.none.fl_str_mv Ciencias Económicas
economía
productividad
topic Ciencias Económicas
economía
productividad
dc.description.none.fl_txt_mv The object of this article is to study the so-called Law of the Optimum Technician in relation to the continuous function of production. We presume that the production function is defined by the dimension interval of n ai<= vi <=bi, with ai>0, i=1,...,n where partial first continuous derivates are allowed, but the existence of partial second derivatives are not sought. We presume that marginal productivity x'i (vi) is first a positive monotony, increasing until it reaches a maximum, after which it is a decreasing monotony until it reaches a minimum of negative value, to later become an increasing negative monotony. Based on this we analytically deduce that the medium productivity curve xi(vi) in the different cases which may arise finally brings us to the needed condition, sufficient to fulfill the Law of the optimum technician. This is followed by a geometric interpretation of the question, and concludes by considering the special case of ai= 0.
Facultad de Ciencias Económicas
description The object of this article is to study the so-called Law of the Optimum Technician in relation to the continuous function of production. We presume that the production function is defined by the dimension interval of n ai<= vi <=bi, with ai>0, i=1,...,n where partial first continuous derivates are allowed, but the existence of partial second derivatives are not sought. We presume that marginal productivity x'i (vi) is first a positive monotony, increasing until it reaches a maximum, after which it is a decreasing monotony until it reaches a minimum of negative value, to later become an increasing negative monotony. Based on this we analytically deduce that the medium productivity curve xi(vi) in the different cases which may arise finally brings us to the needed condition, sufficient to fulfill the Law of the optimum technician. This is followed by a geometric interpretation of the question, and concludes by considering the special case of ai= 0.
publishDate 1967
dc.date.none.fl_str_mv 1967-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/8958
url http://sedici.unlp.edu.ar/handle/10915/8958
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/3.0/
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)
dc.format.none.fl_str_mv application/pdf
17-30
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846782738606063616
score 12.982451