Human and computer estimations of predictability of words on written language
- Autores
- Bianchi, Bruno; Carrillo, Facundo; Fernández Slezak, Diego; Kamienkowski, Juan E.; Shalom, Diego E.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- When we read printed text, we continuously predict the follow words in order to integrate information and direct future eye movements to forthcoming words. Thus the Predictability has become one the most important variables when explaining human behavior and information processing during reading. In this study we present results of word predictability in long Spanish texts, estimated from human responses in a massive web-based task. We used Latent Semantic Analysis (LSA) as a way to estimate human-based predictability values computationally. We validated the human estimation of predictability with local and global properties of the text, and we showed that LSA-distance on adequate timescale captures some semantic aspects of the prediction.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Inteligencia Artificial - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/41731
Ver los metadatos del registro completo
id |
SEDICI_752c4cfbb3472a84aba105c6be14666a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/41731 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Human and computer estimations of predictability of words on written languageBianchi, BrunoCarrillo, FacundoFernández Slezak, DiegoKamienkowski, Juan E.Shalom, Diego E.Ciencias InformáticasInteligencia ArtificialWhen we read printed text, we continuously predict the follow words in order to integrate information and direct future eye movements to forthcoming words. Thus the Predictability has become one the most important variables when explaining human behavior and information processing during reading. In this study we present results of word predictability in long Spanish texts, estimated from human responses in a massive web-based task. We used Latent Semantic Analysis (LSA) as a way to estimate human-based predictability values computationally. We validated the human estimation of predictability with local and global properties of the text, and we showed that LSA-distance on adequate timescale captures some semantic aspects of the prediction.Sociedad Argentina de Informática e Investigación Operativa2014-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf99-106http://sedici.unlp.edu.ar/handle/10915/41731enginfo:eu-repo/semantics/altIdentifier/url/http://43jaiio.sadio.org.ar/proceedings/ASAI/13.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2784info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:01:08Zoai:sedici.unlp.edu.ar:10915/41731Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:01:08.867SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Human and computer estimations of predictability of words on written language |
title |
Human and computer estimations of predictability of words on written language |
spellingShingle |
Human and computer estimations of predictability of words on written language Bianchi, Bruno Ciencias Informáticas Inteligencia Artificial |
title_short |
Human and computer estimations of predictability of words on written language |
title_full |
Human and computer estimations of predictability of words on written language |
title_fullStr |
Human and computer estimations of predictability of words on written language |
title_full_unstemmed |
Human and computer estimations of predictability of words on written language |
title_sort |
Human and computer estimations of predictability of words on written language |
dc.creator.none.fl_str_mv |
Bianchi, Bruno Carrillo, Facundo Fernández Slezak, Diego Kamienkowski, Juan E. Shalom, Diego E. |
author |
Bianchi, Bruno |
author_facet |
Bianchi, Bruno Carrillo, Facundo Fernández Slezak, Diego Kamienkowski, Juan E. Shalom, Diego E. |
author_role |
author |
author2 |
Carrillo, Facundo Fernández Slezak, Diego Kamienkowski, Juan E. Shalom, Diego E. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Inteligencia Artificial |
topic |
Ciencias Informáticas Inteligencia Artificial |
dc.description.none.fl_txt_mv |
When we read printed text, we continuously predict the follow words in order to integrate information and direct future eye movements to forthcoming words. Thus the Predictability has become one the most important variables when explaining human behavior and information processing during reading. In this study we present results of word predictability in long Spanish texts, estimated from human responses in a massive web-based task. We used Latent Semantic Analysis (LSA) as a way to estimate human-based predictability values computationally. We validated the human estimation of predictability with local and global properties of the text, and we showed that LSA-distance on adequate timescale captures some semantic aspects of the prediction. Sociedad Argentina de Informática e Investigación Operativa |
description |
When we read printed text, we continuously predict the follow words in order to integrate information and direct future eye movements to forthcoming words. Thus the Predictability has become one the most important variables when explaining human behavior and information processing during reading. In this study we present results of word predictability in long Spanish texts, estimated from human responses in a massive web-based task. We used Latent Semantic Analysis (LSA) as a way to estimate human-based predictability values computationally. We validated the human estimation of predictability with local and global properties of the text, and we showed that LSA-distance on adequate timescale captures some semantic aspects of the prediction. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/41731 |
url |
http://sedici.unlp.edu.ar/handle/10915/41731 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://43jaiio.sadio.org.ar/proceedings/ASAI/13.pdf info:eu-repo/semantics/altIdentifier/issn/1850-2784 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
dc.format.none.fl_str_mv |
application/pdf 99-106 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615877890146304 |
score |
13.070432 |