Human and computer estimations of Predictability of words in written language
- Autores
- Bianchi, Bruno; Bengolea Monzón, Gastón; Ferrer, Luciana; Fernández Slezak, Diego; Shalóm, Diego Edgar; Kamienkowski, Juan Esteban
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- When we read printed text, we are continuously predicting upcoming words to integrate information and guide future eye movements. Thus, the Predictability of a given word has become one of the most important variables when explaining human behaviour and information processing during reading. In parallel, the Natural Language Processing (NLP) field evolved by developing a wide variety of applications. Here, we show that using different word embeddings techniques (like Latent Semantic Analysis, Word2Vec, and FastText) and N-gram-based language models we were able to estimate how humans predict words (cloze-task Predictability) and how to better understand eye movements in long Spanish texts. Both types of models partially captured aspects of predictability. On the one hand, our N-gram model performed well when added as a replacement for the cloze-task Predictability of the fixated word. On the other hand, word embeddings were useful to mimic Predictability of the following word. Our study joins efforts from neurolinguistic and NLP fields to understand human information processing during reading to potentially improve NLP algorithms.
Fil: Bianchi, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Bengolea Monzón, Gastón. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Fernández Slezak, Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Shalóm, Diego Edgar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina - Materia
-
Predictability
Eye Movements
Natural Language Processing
Reading - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/142173
Ver los metadatos del registro completo
id |
CONICETDig_2b071b3563be4dae6415f636ee3c2931 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/142173 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Human and computer estimations of Predictability of words in written languageBianchi, BrunoBengolea Monzón, GastónFerrer, LucianaFernández Slezak, DiegoShalóm, Diego EdgarKamienkowski, Juan EstebanPredictabilityEye MovementsNatural Language ProcessingReadinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1When we read printed text, we are continuously predicting upcoming words to integrate information and guide future eye movements. Thus, the Predictability of a given word has become one of the most important variables when explaining human behaviour and information processing during reading. In parallel, the Natural Language Processing (NLP) field evolved by developing a wide variety of applications. Here, we show that using different word embeddings techniques (like Latent Semantic Analysis, Word2Vec, and FastText) and N-gram-based language models we were able to estimate how humans predict words (cloze-task Predictability) and how to better understand eye movements in long Spanish texts. Both types of models partially captured aspects of predictability. On the one hand, our N-gram model performed well when added as a replacement for the cloze-task Predictability of the fixated word. On the other hand, word embeddings were useful to mimic Predictability of the following word. Our study joins efforts from neurolinguistic and NLP fields to understand human information processing during reading to potentially improve NLP algorithms.Fil: Bianchi, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Bengolea Monzón, Gastón. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Fernández Slezak, Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Shalóm, Diego Edgar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaNature Research2020-03-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142173Bianchi, Bruno; Bengolea Monzón, Gastón; Ferrer, Luciana; Fernández Slezak, Diego; Shalóm, Diego Edgar; et al.; Human and computer estimations of Predictability of words in written language; Nature Research; Scientific Reports; 10; 1; 10-3-2020; 1-112045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41598-020-61353-zinfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-61353-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:59Zoai:ri.conicet.gov.ar:11336/142173instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:00.173CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Human and computer estimations of Predictability of words in written language |
title |
Human and computer estimations of Predictability of words in written language |
spellingShingle |
Human and computer estimations of Predictability of words in written language Bianchi, Bruno Predictability Eye Movements Natural Language Processing Reading |
title_short |
Human and computer estimations of Predictability of words in written language |
title_full |
Human and computer estimations of Predictability of words in written language |
title_fullStr |
Human and computer estimations of Predictability of words in written language |
title_full_unstemmed |
Human and computer estimations of Predictability of words in written language |
title_sort |
Human and computer estimations of Predictability of words in written language |
dc.creator.none.fl_str_mv |
Bianchi, Bruno Bengolea Monzón, Gastón Ferrer, Luciana Fernández Slezak, Diego Shalóm, Diego Edgar Kamienkowski, Juan Esteban |
author |
Bianchi, Bruno |
author_facet |
Bianchi, Bruno Bengolea Monzón, Gastón Ferrer, Luciana Fernández Slezak, Diego Shalóm, Diego Edgar Kamienkowski, Juan Esteban |
author_role |
author |
author2 |
Bengolea Monzón, Gastón Ferrer, Luciana Fernández Slezak, Diego Shalóm, Diego Edgar Kamienkowski, Juan Esteban |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Predictability Eye Movements Natural Language Processing Reading |
topic |
Predictability Eye Movements Natural Language Processing Reading |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
When we read printed text, we are continuously predicting upcoming words to integrate information and guide future eye movements. Thus, the Predictability of a given word has become one of the most important variables when explaining human behaviour and information processing during reading. In parallel, the Natural Language Processing (NLP) field evolved by developing a wide variety of applications. Here, we show that using different word embeddings techniques (like Latent Semantic Analysis, Word2Vec, and FastText) and N-gram-based language models we were able to estimate how humans predict words (cloze-task Predictability) and how to better understand eye movements in long Spanish texts. Both types of models partially captured aspects of predictability. On the one hand, our N-gram model performed well when added as a replacement for the cloze-task Predictability of the fixated word. On the other hand, word embeddings were useful to mimic Predictability of the following word. Our study joins efforts from neurolinguistic and NLP fields to understand human information processing during reading to potentially improve NLP algorithms. Fil: Bianchi, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Bengolea Monzón, Gastón. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Fernández Slezak, Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Shalóm, Diego Edgar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina |
description |
When we read printed text, we are continuously predicting upcoming words to integrate information and guide future eye movements. Thus, the Predictability of a given word has become one of the most important variables when explaining human behaviour and information processing during reading. In parallel, the Natural Language Processing (NLP) field evolved by developing a wide variety of applications. Here, we show that using different word embeddings techniques (like Latent Semantic Analysis, Word2Vec, and FastText) and N-gram-based language models we were able to estimate how humans predict words (cloze-task Predictability) and how to better understand eye movements in long Spanish texts. Both types of models partially captured aspects of predictability. On the one hand, our N-gram model performed well when added as a replacement for the cloze-task Predictability of the fixated word. On the other hand, word embeddings were useful to mimic Predictability of the following word. Our study joins efforts from neurolinguistic and NLP fields to understand human information processing during reading to potentially improve NLP algorithms. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/142173 Bianchi, Bruno; Bengolea Monzón, Gastón; Ferrer, Luciana; Fernández Slezak, Diego; Shalóm, Diego Edgar; et al.; Human and computer estimations of Predictability of words in written language; Nature Research; Scientific Reports; 10; 1; 10-3-2020; 1-11 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/142173 |
identifier_str_mv |
Bianchi, Bruno; Bengolea Monzón, Gastón; Ferrer, Luciana; Fernández Slezak, Diego; Shalóm, Diego Edgar; et al.; Human and computer estimations of Predictability of words in written language; Nature Research; Scientific Reports; 10; 1; 10-3-2020; 1-11 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41598-020-61353-z info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-61353-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Research |
publisher.none.fl_str_mv |
Nature Research |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269316949475328 |
score |
13.13397 |