Human and computer estimations of Predictability of words in written language

Autores
Bianchi, Bruno; Bengolea Monzón, Gastón; Ferrer, Luciana; Fernández Slezak, Diego; Shalóm, Diego Edgar; Kamienkowski, Juan Esteban
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
When we read printed text, we are continuously predicting upcoming words to integrate information and guide future eye movements. Thus, the Predictability of a given word has become one of the most important variables when explaining human behaviour and information processing during reading. In parallel, the Natural Language Processing (NLP) field evolved by developing a wide variety of applications. Here, we show that using different word embeddings techniques (like Latent Semantic Analysis, Word2Vec, and FastText) and N-gram-based language models we were able to estimate how humans predict words (cloze-task Predictability) and how to better understand eye movements in long Spanish texts. Both types of models partially captured aspects of predictability. On the one hand, our N-gram model performed well when added as a replacement for the cloze-task Predictability of the fixated word. On the other hand, word embeddings were useful to mimic Predictability of the following word. Our study joins efforts from neurolinguistic and NLP fields to understand human information processing during reading to potentially improve NLP algorithms.
Fil: Bianchi, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Bengolea Monzón, Gastón. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Fernández Slezak, Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Shalóm, Diego Edgar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Materia
Predictability
Eye Movements
Natural Language Processing
Reading
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/142173

id CONICETDig_2b071b3563be4dae6415f636ee3c2931
oai_identifier_str oai:ri.conicet.gov.ar:11336/142173
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Human and computer estimations of Predictability of words in written languageBianchi, BrunoBengolea Monzón, GastónFerrer, LucianaFernández Slezak, DiegoShalóm, Diego EdgarKamienkowski, Juan EstebanPredictabilityEye MovementsNatural Language ProcessingReadinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1When we read printed text, we are continuously predicting upcoming words to integrate information and guide future eye movements. Thus, the Predictability of a given word has become one of the most important variables when explaining human behaviour and information processing during reading. In parallel, the Natural Language Processing (NLP) field evolved by developing a wide variety of applications. Here, we show that using different word embeddings techniques (like Latent Semantic Analysis, Word2Vec, and FastText) and N-gram-based language models we were able to estimate how humans predict words (cloze-task Predictability) and how to better understand eye movements in long Spanish texts. Both types of models partially captured aspects of predictability. On the one hand, our N-gram model performed well when added as a replacement for the cloze-task Predictability of the fixated word. On the other hand, word embeddings were useful to mimic Predictability of the following word. Our study joins efforts from neurolinguistic and NLP fields to understand human information processing during reading to potentially improve NLP algorithms.Fil: Bianchi, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Bengolea Monzón, Gastón. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Fernández Slezak, Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Shalóm, Diego Edgar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaNature Research2020-03-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142173Bianchi, Bruno; Bengolea Monzón, Gastón; Ferrer, Luciana; Fernández Slezak, Diego; Shalóm, Diego Edgar; et al.; Human and computer estimations of Predictability of words in written language; Nature Research; Scientific Reports; 10; 1; 10-3-2020; 1-112045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41598-020-61353-zinfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-61353-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:59Zoai:ri.conicet.gov.ar:11336/142173instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:00.173CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Human and computer estimations of Predictability of words in written language
title Human and computer estimations of Predictability of words in written language
spellingShingle Human and computer estimations of Predictability of words in written language
Bianchi, Bruno
Predictability
Eye Movements
Natural Language Processing
Reading
title_short Human and computer estimations of Predictability of words in written language
title_full Human and computer estimations of Predictability of words in written language
title_fullStr Human and computer estimations of Predictability of words in written language
title_full_unstemmed Human and computer estimations of Predictability of words in written language
title_sort Human and computer estimations of Predictability of words in written language
dc.creator.none.fl_str_mv Bianchi, Bruno
Bengolea Monzón, Gastón
Ferrer, Luciana
Fernández Slezak, Diego
Shalóm, Diego Edgar
Kamienkowski, Juan Esteban
author Bianchi, Bruno
author_facet Bianchi, Bruno
Bengolea Monzón, Gastón
Ferrer, Luciana
Fernández Slezak, Diego
Shalóm, Diego Edgar
Kamienkowski, Juan Esteban
author_role author
author2 Bengolea Monzón, Gastón
Ferrer, Luciana
Fernández Slezak, Diego
Shalóm, Diego Edgar
Kamienkowski, Juan Esteban
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Predictability
Eye Movements
Natural Language Processing
Reading
topic Predictability
Eye Movements
Natural Language Processing
Reading
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv When we read printed text, we are continuously predicting upcoming words to integrate information and guide future eye movements. Thus, the Predictability of a given word has become one of the most important variables when explaining human behaviour and information processing during reading. In parallel, the Natural Language Processing (NLP) field evolved by developing a wide variety of applications. Here, we show that using different word embeddings techniques (like Latent Semantic Analysis, Word2Vec, and FastText) and N-gram-based language models we were able to estimate how humans predict words (cloze-task Predictability) and how to better understand eye movements in long Spanish texts. Both types of models partially captured aspects of predictability. On the one hand, our N-gram model performed well when added as a replacement for the cloze-task Predictability of the fixated word. On the other hand, word embeddings were useful to mimic Predictability of the following word. Our study joins efforts from neurolinguistic and NLP fields to understand human information processing during reading to potentially improve NLP algorithms.
Fil: Bianchi, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Bengolea Monzón, Gastón. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Fernández Slezak, Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Shalóm, Diego Edgar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
description When we read printed text, we are continuously predicting upcoming words to integrate information and guide future eye movements. Thus, the Predictability of a given word has become one of the most important variables when explaining human behaviour and information processing during reading. In parallel, the Natural Language Processing (NLP) field evolved by developing a wide variety of applications. Here, we show that using different word embeddings techniques (like Latent Semantic Analysis, Word2Vec, and FastText) and N-gram-based language models we were able to estimate how humans predict words (cloze-task Predictability) and how to better understand eye movements in long Spanish texts. Both types of models partially captured aspects of predictability. On the one hand, our N-gram model performed well when added as a replacement for the cloze-task Predictability of the fixated word. On the other hand, word embeddings were useful to mimic Predictability of the following word. Our study joins efforts from neurolinguistic and NLP fields to understand human information processing during reading to potentially improve NLP algorithms.
publishDate 2020
dc.date.none.fl_str_mv 2020-03-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/142173
Bianchi, Bruno; Bengolea Monzón, Gastón; Ferrer, Luciana; Fernández Slezak, Diego; Shalóm, Diego Edgar; et al.; Human and computer estimations of Predictability of words in written language; Nature Research; Scientific Reports; 10; 1; 10-3-2020; 1-11
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/142173
identifier_str_mv Bianchi, Bruno; Bengolea Monzón, Gastón; Ferrer, Luciana; Fernández Slezak, Diego; Shalóm, Diego Edgar; et al.; Human and computer estimations of Predictability of words in written language; Nature Research; Scientific Reports; 10; 1; 10-3-2020; 1-11
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41598-020-61353-z
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-61353-z
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Research
publisher.none.fl_str_mv Nature Research
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269316949475328
score 13.13397