Cosecha de energía a partir de la inestabilidad aeroelástica flutter

Autores
Ribero, Santiago; Hümöller, Juan M.; Beltramo, Emmanuel; Stuardi, José E.; Preidikman, Sergio
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
La cosecha de energía (en inglés: “energy harvesting” o “power harvesting”) es el proceso por el cual la energía que “rodea” a un sistema (lumínica, térmica, solar o cinética) es convertida en una forma “utilizable” de energía con el fin de, por ejemplo, alimentar sensores, actuadores, u otros dispositivos electrónicos. Es posible desarrollar cosechadores de energía que utilicen las vibraciones mecánicas de algún componente estructural (debidas a ráfagas o a oscilaciones de ciclo límite causadas por inestabilidades aeroelásticas como por ejemplo el flutter) como fuente principal de energía de entrada. La conversión de estas vibraciones en energía eléctrica aprovechable puede llevarse a cabo empleando transductores piezoeléctricos. En este trabajo se estudia una versión simplificada de un ala multifuncional como elemento cosechador de energía. Esta es estructuralmente representada por una viga en voladizo cuyas superficies superior e inferior están cubiertas por material piezoeléctrico, mientras que su extremo libre se vincula a un perfil aerodinámico simétrico. Las ecuaciones electro-aeroelásticas se desarrollan utilizando un enfoque energético. Las cargas aerodinámicas no-lineales e inestacionarias son evaluadas mediante la implementación de una versión ad-hoc del método de la red de vórtices. La integración de las ecuaciones gobernantes se realiza numérica e interactivamente en el dominio del tiempo empleando un método predictor-corrector. Como parte de los resultados obtenidos, se determinó la velocidad de flutter para el modelo aeroelástico y para el electro-aeroelástico, y se analizó el desempeño del cosechador en condición de flutter. Se calculó la tensión y la potencia cosechada en régimen en función de la carga resistiva. Este esfuerzo constituye el punto de partida para encarar futuros trabajos sobre sistemas de mayor envergadura, como por ejemplo aviones equipados con alas multifuncionales extremadamente flexibles y muy esbeltas. Esta tecnología posibilita alimentar a sensores y sistemas de accionamiento mediante la energía cosechada.
Publicado en: Mecánica Computacional vol. XXXV, no. 26
Facultad de Ingeniería
Materia
Ingeniería
Cosecha de energía
Aeroelasticidad
Materiales piezoeléctricos
Flutter
Aerodinámica inestacionaria
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/103871

id SEDICI_715001cf5971557b315570d85c096582
oai_identifier_str oai:sedici.unlp.edu.ar:10915/103871
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Cosecha de energía a partir de la inestabilidad aeroelástica flutterRibero, SantiagoHümöller, Juan M.Beltramo, EmmanuelStuardi, José E.Preidikman, SergioIngenieríaCosecha de energíaAeroelasticidadMateriales piezoeléctricosFlutterAerodinámica inestacionariaLa cosecha de energía (en inglés: “energy harvesting” o “power harvesting”) es el proceso por el cual la energía que “rodea” a un sistema (lumínica, térmica, solar o cinética) es convertida en una forma “utilizable” de energía con el fin de, por ejemplo, alimentar sensores, actuadores, u otros dispositivos electrónicos. Es posible desarrollar cosechadores de energía que utilicen las vibraciones mecánicas de algún componente estructural (debidas a ráfagas o a oscilaciones de ciclo límite causadas por inestabilidades aeroelásticas como por ejemplo el flutter) como fuente principal de energía de entrada. La conversión de estas vibraciones en energía eléctrica aprovechable puede llevarse a cabo empleando transductores piezoeléctricos. En este trabajo se estudia una versión simplificada de un ala multifuncional como elemento cosechador de energía. Esta es estructuralmente representada por una viga en voladizo cuyas superficies superior e inferior están cubiertas por material piezoeléctrico, mientras que su extremo libre se vincula a un perfil aerodinámico simétrico. Las ecuaciones electro-aeroelásticas se desarrollan utilizando un enfoque energético. Las cargas aerodinámicas no-lineales e inestacionarias son evaluadas mediante la implementación de una versión ad-hoc del método de la red de vórtices. La integración de las ecuaciones gobernantes se realiza numérica e interactivamente en el dominio del tiempo empleando un método predictor-corrector. Como parte de los resultados obtenidos, se determinó la velocidad de flutter para el modelo aeroelástico y para el electro-aeroelástico, y se analizó el desempeño del cosechador en condición de flutter. Se calculó la tensión y la potencia cosechada en régimen en función de la carga resistiva. Este esfuerzo constituye el punto de partida para encarar futuros trabajos sobre sistemas de mayor envergadura, como por ejemplo aviones equipados con alas multifuncionales extremadamente flexibles y muy esbeltas. Esta tecnología posibilita alimentar a sensores y sistemas de accionamiento mediante la energía cosechada.Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 26Facultad de Ingeniería2017-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1455-1470http://sedici.unlp.edu.ar/handle/10915/103871spainfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5364info:eu-repo/semantics/altIdentifier/issn/2591-3522info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T10:05:23Zoai:sedici.unlp.edu.ar:10915/103871Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 10:05:23.837SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Cosecha de energía a partir de la inestabilidad aeroelástica flutter
title Cosecha de energía a partir de la inestabilidad aeroelástica flutter
spellingShingle Cosecha de energía a partir de la inestabilidad aeroelástica flutter
Ribero, Santiago
Ingeniería
Cosecha de energía
Aeroelasticidad
Materiales piezoeléctricos
Flutter
Aerodinámica inestacionaria
title_short Cosecha de energía a partir de la inestabilidad aeroelástica flutter
title_full Cosecha de energía a partir de la inestabilidad aeroelástica flutter
title_fullStr Cosecha de energía a partir de la inestabilidad aeroelástica flutter
title_full_unstemmed Cosecha de energía a partir de la inestabilidad aeroelástica flutter
title_sort Cosecha de energía a partir de la inestabilidad aeroelástica flutter
dc.creator.none.fl_str_mv Ribero, Santiago
Hümöller, Juan M.
Beltramo, Emmanuel
Stuardi, José E.
Preidikman, Sergio
author Ribero, Santiago
author_facet Ribero, Santiago
Hümöller, Juan M.
Beltramo, Emmanuel
Stuardi, José E.
Preidikman, Sergio
author_role author
author2 Hümöller, Juan M.
Beltramo, Emmanuel
Stuardi, José E.
Preidikman, Sergio
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ingeniería
Cosecha de energía
Aeroelasticidad
Materiales piezoeléctricos
Flutter
Aerodinámica inestacionaria
topic Ingeniería
Cosecha de energía
Aeroelasticidad
Materiales piezoeléctricos
Flutter
Aerodinámica inestacionaria
dc.description.none.fl_txt_mv La cosecha de energía (en inglés: “energy harvesting” o “power harvesting”) es el proceso por el cual la energía que “rodea” a un sistema (lumínica, térmica, solar o cinética) es convertida en una forma “utilizable” de energía con el fin de, por ejemplo, alimentar sensores, actuadores, u otros dispositivos electrónicos. Es posible desarrollar cosechadores de energía que utilicen las vibraciones mecánicas de algún componente estructural (debidas a ráfagas o a oscilaciones de ciclo límite causadas por inestabilidades aeroelásticas como por ejemplo el flutter) como fuente principal de energía de entrada. La conversión de estas vibraciones en energía eléctrica aprovechable puede llevarse a cabo empleando transductores piezoeléctricos. En este trabajo se estudia una versión simplificada de un ala multifuncional como elemento cosechador de energía. Esta es estructuralmente representada por una viga en voladizo cuyas superficies superior e inferior están cubiertas por material piezoeléctrico, mientras que su extremo libre se vincula a un perfil aerodinámico simétrico. Las ecuaciones electro-aeroelásticas se desarrollan utilizando un enfoque energético. Las cargas aerodinámicas no-lineales e inestacionarias son evaluadas mediante la implementación de una versión ad-hoc del método de la red de vórtices. La integración de las ecuaciones gobernantes se realiza numérica e interactivamente en el dominio del tiempo empleando un método predictor-corrector. Como parte de los resultados obtenidos, se determinó la velocidad de flutter para el modelo aeroelástico y para el electro-aeroelástico, y se analizó el desempeño del cosechador en condición de flutter. Se calculó la tensión y la potencia cosechada en régimen en función de la carga resistiva. Este esfuerzo constituye el punto de partida para encarar futuros trabajos sobre sistemas de mayor envergadura, como por ejemplo aviones equipados con alas multifuncionales extremadamente flexibles y muy esbeltas. Esta tecnología posibilita alimentar a sensores y sistemas de accionamiento mediante la energía cosechada.
Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 26
Facultad de Ingeniería
description La cosecha de energía (en inglés: “energy harvesting” o “power harvesting”) es el proceso por el cual la energía que “rodea” a un sistema (lumínica, térmica, solar o cinética) es convertida en una forma “utilizable” de energía con el fin de, por ejemplo, alimentar sensores, actuadores, u otros dispositivos electrónicos. Es posible desarrollar cosechadores de energía que utilicen las vibraciones mecánicas de algún componente estructural (debidas a ráfagas o a oscilaciones de ciclo límite causadas por inestabilidades aeroelásticas como por ejemplo el flutter) como fuente principal de energía de entrada. La conversión de estas vibraciones en energía eléctrica aprovechable puede llevarse a cabo empleando transductores piezoeléctricos. En este trabajo se estudia una versión simplificada de un ala multifuncional como elemento cosechador de energía. Esta es estructuralmente representada por una viga en voladizo cuyas superficies superior e inferior están cubiertas por material piezoeléctrico, mientras que su extremo libre se vincula a un perfil aerodinámico simétrico. Las ecuaciones electro-aeroelásticas se desarrollan utilizando un enfoque energético. Las cargas aerodinámicas no-lineales e inestacionarias son evaluadas mediante la implementación de una versión ad-hoc del método de la red de vórtices. La integración de las ecuaciones gobernantes se realiza numérica e interactivamente en el dominio del tiempo empleando un método predictor-corrector. Como parte de los resultados obtenidos, se determinó la velocidad de flutter para el modelo aeroelástico y para el electro-aeroelástico, y se analizó el desempeño del cosechador en condición de flutter. Se calculó la tensión y la potencia cosechada en régimen en función de la carga resistiva. Este esfuerzo constituye el punto de partida para encarar futuros trabajos sobre sistemas de mayor envergadura, como por ejemplo aviones equipados con alas multifuncionales extremadamente flexibles y muy esbeltas. Esta tecnología posibilita alimentar a sensores y sistemas de accionamiento mediante la energía cosechada.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/103871
url http://sedici.unlp.edu.ar/handle/10915/103871
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5364
info:eu-repo/semantics/altIdentifier/issn/2591-3522
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1455-1470
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1843532596457242624
score 13.001348