Attribute-Value Extraction: The case of a Real Estate Observatory
- Autores
- Bazzana Tanevitch, Luciana; Fernández, Alejandro; Río, Juan Pablo del; Torres, Diego
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Structured information is a valuable resource in information systems construction. The process of structuring unstructured data can be automated, but since machines can’t directly process natural language texts, NLP techniques are required. This work aims to evaluate different approaches to perform attribute-value extraction in real estate descriptions, in the context of the construction of a real estate observatory for the Province of Buenos Aires. The performance of each model is measured using precision, recall and F1-score with a partial matching approach.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Real Estate Observatory
Natural Language Processing
Information Extraction
Attribute Value Extraction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/178459
Ver los metadatos del registro completo
id |
SEDICI_708611ca7ad53e8db1d61acb05229a0e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/178459 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Attribute-Value Extraction: The case of a Real Estate ObservatoryBazzana Tanevitch, LucianaFernández, AlejandroRío, Juan Pablo delTorres, DiegoCiencias InformáticasReal Estate ObservatoryNatural Language ProcessingInformation ExtractionAttribute Value ExtractionStructured information is a valuable resource in information systems construction. The process of structuring unstructured data can be automated, but since machines can’t directly process natural language texts, NLP techniques are required. This work aims to evaluate different approaches to perform attribute-value extraction in real estate descriptions, in the context of the construction of a real estate observatory for the Province of Buenos Aires. The performance of each model is measured using precision, recall and F1-score with a partial matching approach.Sociedad Argentina de Informática e Investigación Operativa2024-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf181-194http://sedici.unlp.edu.ar/handle/10915/178459enginfo:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/JAIIO/article/view/17910info:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:47:49Zoai:sedici.unlp.edu.ar:10915/178459Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:47:49.537SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Attribute-Value Extraction: The case of a Real Estate Observatory |
title |
Attribute-Value Extraction: The case of a Real Estate Observatory |
spellingShingle |
Attribute-Value Extraction: The case of a Real Estate Observatory Bazzana Tanevitch, Luciana Ciencias Informáticas Real Estate Observatory Natural Language Processing Information Extraction Attribute Value Extraction |
title_short |
Attribute-Value Extraction: The case of a Real Estate Observatory |
title_full |
Attribute-Value Extraction: The case of a Real Estate Observatory |
title_fullStr |
Attribute-Value Extraction: The case of a Real Estate Observatory |
title_full_unstemmed |
Attribute-Value Extraction: The case of a Real Estate Observatory |
title_sort |
Attribute-Value Extraction: The case of a Real Estate Observatory |
dc.creator.none.fl_str_mv |
Bazzana Tanevitch, Luciana Fernández, Alejandro Río, Juan Pablo del Torres, Diego |
author |
Bazzana Tanevitch, Luciana |
author_facet |
Bazzana Tanevitch, Luciana Fernández, Alejandro Río, Juan Pablo del Torres, Diego |
author_role |
author |
author2 |
Fernández, Alejandro Río, Juan Pablo del Torres, Diego |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Real Estate Observatory Natural Language Processing Information Extraction Attribute Value Extraction |
topic |
Ciencias Informáticas Real Estate Observatory Natural Language Processing Information Extraction Attribute Value Extraction |
dc.description.none.fl_txt_mv |
Structured information is a valuable resource in information systems construction. The process of structuring unstructured data can be automated, but since machines can’t directly process natural language texts, NLP techniques are required. This work aims to evaluate different approaches to perform attribute-value extraction in real estate descriptions, in the context of the construction of a real estate observatory for the Province of Buenos Aires. The performance of each model is measured using precision, recall and F1-score with a partial matching approach. Sociedad Argentina de Informática e Investigación Operativa |
description |
Structured information is a valuable resource in information systems construction. The process of structuring unstructured data can be automated, but since machines can’t directly process natural language texts, NLP techniques are required. This work aims to evaluate different approaches to perform attribute-value extraction in real estate descriptions, in the context of the construction of a real estate observatory for the Province of Buenos Aires. The performance of each model is measured using precision, recall and F1-score with a partial matching approach. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/178459 |
url |
http://sedici.unlp.edu.ar/handle/10915/178459 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/JAIIO/article/view/17910 info:eu-repo/semantics/altIdentifier/issn/2451-7496 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 181-194 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616341503344640 |
score |
13.070432 |