Attribute-Value Extraction: the case of a Real Estate Observatory
- Autores
- Tanevitch, Luciana; Fernández, Alejandro; Del Río, Juan Pablo; Torres, Diego
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Structured information is a valuable resource in information systems construction. The process of structuring unstructured data can be automated, but since machines can’t directly process natural language texts, NLP techniques are required. This work aims to evaluate different approaches to perform attribute-value extraction in real estate descriptions, in the context of the construction of a real estate observatory for the Province of Buenos Aires. The performance of each model is measured using precision, recall and F1-score with a partial matching approach.
- Materia
-
Ciencias de la Computación e Información
Real Estate Observatory
Natural Language Processing
Information Extraction
Attribute Value Extraction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/3.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/12355
Ver los metadatos del registro completo
id |
CICBA_f56a75470255022a543a4bd318428b0b |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/12355 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Attribute-Value Extraction: the case of a Real Estate ObservatoryTanevitch, LucianaFernández, AlejandroDel Río, Juan PabloTorres, DiegoCiencias de la Computación e InformaciónReal Estate ObservatoryNatural Language ProcessingInformation ExtractionAttribute Value ExtractionStructured information is a valuable resource in information systems construction. The process of structuring unstructured data can be automated, but since machines can’t directly process natural language texts, NLP techniques are required. This work aims to evaluate different approaches to perform attribute-value extraction in real estate descriptions, in the context of the construction of a real estate observatory for the Province of Buenos Aires. The performance of each model is measured using precision, recall and F1-score with a partial matching approach.2024-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/12355enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:10Zoai:digital.cic.gba.gob.ar:11746/12355Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:10.524CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Attribute-Value Extraction: the case of a Real Estate Observatory |
title |
Attribute-Value Extraction: the case of a Real Estate Observatory |
spellingShingle |
Attribute-Value Extraction: the case of a Real Estate Observatory Tanevitch, Luciana Ciencias de la Computación e Información Real Estate Observatory Natural Language Processing Information Extraction Attribute Value Extraction |
title_short |
Attribute-Value Extraction: the case of a Real Estate Observatory |
title_full |
Attribute-Value Extraction: the case of a Real Estate Observatory |
title_fullStr |
Attribute-Value Extraction: the case of a Real Estate Observatory |
title_full_unstemmed |
Attribute-Value Extraction: the case of a Real Estate Observatory |
title_sort |
Attribute-Value Extraction: the case of a Real Estate Observatory |
dc.creator.none.fl_str_mv |
Tanevitch, Luciana Fernández, Alejandro Del Río, Juan Pablo Torres, Diego |
author |
Tanevitch, Luciana |
author_facet |
Tanevitch, Luciana Fernández, Alejandro Del Río, Juan Pablo Torres, Diego |
author_role |
author |
author2 |
Fernández, Alejandro Del Río, Juan Pablo Torres, Diego |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias de la Computación e Información Real Estate Observatory Natural Language Processing Information Extraction Attribute Value Extraction |
topic |
Ciencias de la Computación e Información Real Estate Observatory Natural Language Processing Information Extraction Attribute Value Extraction |
dc.description.none.fl_txt_mv |
Structured information is a valuable resource in information systems construction. The process of structuring unstructured data can be automated, but since machines can’t directly process natural language texts, NLP techniques are required. This work aims to evaluate different approaches to perform attribute-value extraction in real estate descriptions, in the context of the construction of a real estate observatory for the Province of Buenos Aires. The performance of each model is measured using precision, recall and F1-score with a partial matching approach. |
description |
Structured information is a valuable resource in information systems construction. The process of structuring unstructured data can be automated, but since machines can’t directly process natural language texts, NLP techniques are required. This work aims to evaluate different approaches to perform attribute-value extraction in real estate descriptions, in the context of the construction of a real estate observatory for the Province of Buenos Aires. The performance of each model is measured using precision, recall and F1-score with a partial matching approach. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/12355 |
url |
https://digital.cic.gba.gob.ar/handle/11746/12355 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618605334888448 |
score |
13.070432 |