Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes

Autores
Cooke, Mariana; Casado-Medrano, Victoria; Ann, Jihyae; Lee, Jeewoo; Blumberg, Peter M.; Abba, Martín Carlos; Kazanietz, Marcelo G.
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Despite our extensive knowledge on the biology of protein kinase C (PKC) and its involvement in disease, limited success has been attained in the generation of PKC isozyme-specifc modulators acting via the C1 domain, the binding site for the lipid second messenger diacylglycerol (DAG) and the phorbol ester tumor promoters. Synthetic eforts had recently led to the identifcation of AJH-836, a DAG-lactone with preferential afnity for novel isozymes (nPKCs) relative to classical PKCs (cPKCs). Here, we compared the ability of AJH-836 and a prototypical phorbol ester (phorbol 12-myristate 13-acetate, PMA) to induce changes in gene expression in a lung cancer model. Gene profling analysis using RNA-Seq revealed that PMA caused major changes in gene expression, whereas AJH-836 only induced a small subset of genes, thus providing a strong indication for a major involvement of cPKCs in their control of gene expression. MMP1, MMP9, and MMP10 were among the genes most prominently induced by PMA, an efect impaired by RNAi silencing of PKCα, but not PKCδ or PKCε. Comprehensive gene signature analysis and bioinformatics eforts, including functional enrichment and transcription factor binding site analyses of dysregulated genes, identifed major diferences in pathway activation and transcriptional networks between PMA and DAG-lactones. In addition to providing solid evidence for the diferential involvement of individual PKC isozymes in the control of gene expression, our studies emphasize the importance of generating targeted C1 domain ligands capable of diferentially regulating PKC isozyme-specifc function in cellular models.
Centro de Investigaciones Inmunológicas Básicas y Aplicadas
Materia
Ciencias Médicas
Química
Cellular signalling networks
Non-small-cell lung cancer
Target validation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/107509

id SEDICI_6fa36df1250a2e4128aa1260fe24799d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/107509
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C IsozymesCooke, MarianaCasado-Medrano, VictoriaAnn, JihyaeLee, JeewooBlumberg, Peter M.Abba, Martín CarlosKazanietz, Marcelo G.Ciencias MédicasQuímicaCellular signalling networksNon-small-cell lung cancerTarget validationDespite our extensive knowledge on the biology of protein kinase C (PKC) and its involvement in disease, limited success has been attained in the generation of PKC isozyme-specifc modulators acting via the C1 domain, the binding site for the lipid second messenger diacylglycerol (DAG) and the phorbol ester tumor promoters. Synthetic eforts had recently led to the identifcation of AJH-836, a DAG-lactone with preferential afnity for novel isozymes (nPKCs) relative to classical PKCs (cPKCs). Here, we compared the ability of AJH-836 and a prototypical phorbol ester (phorbol 12-myristate 13-acetate, PMA) to induce changes in gene expression in a lung cancer model. Gene profling analysis using RNA-Seq revealed that PMA caused major changes in gene expression, whereas AJH-836 only induced a small subset of genes, thus providing a strong indication for a major involvement of cPKCs in their control of gene expression. MMP1, MMP9, and MMP10 were among the genes most prominently induced by PMA, an efect impaired by RNAi silencing of PKCα, but not PKCδ or PKCε. Comprehensive gene signature analysis and bioinformatics eforts, including functional enrichment and transcription factor binding site analyses of dysregulated genes, identifed major diferences in pathway activation and transcriptional networks between PMA and DAG-lactones. In addition to providing solid evidence for the diferential involvement of individual PKC isozymes in the control of gene expression, our studies emphasize the importance of generating targeted C1 domain ligands capable of diferentially regulating PKC isozyme-specifc function in cellular models.Centro de Investigaciones Inmunológicas Básicas y Aplicadas2019info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/107509enginfo:eu-repo/semantics/altIdentifier/url/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC6465381&blobtype=pdfinfo:eu-repo/semantics/altIdentifier/issn/2045-2322info:eu-repo/semantics/altIdentifier/pmid/30988374info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-019-42581-4info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:23:52Zoai:sedici.unlp.edu.ar:10915/107509Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:23:52.972SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes
title Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes
spellingShingle Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes
Cooke, Mariana
Ciencias Médicas
Química
Cellular signalling networks
Non-small-cell lung cancer
Target validation
title_short Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes
title_full Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes
title_fullStr Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes
title_full_unstemmed Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes
title_sort Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes
dc.creator.none.fl_str_mv Cooke, Mariana
Casado-Medrano, Victoria
Ann, Jihyae
Lee, Jeewoo
Blumberg, Peter M.
Abba, Martín Carlos
Kazanietz, Marcelo G.
author Cooke, Mariana
author_facet Cooke, Mariana
Casado-Medrano, Victoria
Ann, Jihyae
Lee, Jeewoo
Blumberg, Peter M.
Abba, Martín Carlos
Kazanietz, Marcelo G.
author_role author
author2 Casado-Medrano, Victoria
Ann, Jihyae
Lee, Jeewoo
Blumberg, Peter M.
Abba, Martín Carlos
Kazanietz, Marcelo G.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Médicas
Química
Cellular signalling networks
Non-small-cell lung cancer
Target validation
topic Ciencias Médicas
Química
Cellular signalling networks
Non-small-cell lung cancer
Target validation
dc.description.none.fl_txt_mv Despite our extensive knowledge on the biology of protein kinase C (PKC) and its involvement in disease, limited success has been attained in the generation of PKC isozyme-specifc modulators acting via the C1 domain, the binding site for the lipid second messenger diacylglycerol (DAG) and the phorbol ester tumor promoters. Synthetic eforts had recently led to the identifcation of AJH-836, a DAG-lactone with preferential afnity for novel isozymes (nPKCs) relative to classical PKCs (cPKCs). Here, we compared the ability of AJH-836 and a prototypical phorbol ester (phorbol 12-myristate 13-acetate, PMA) to induce changes in gene expression in a lung cancer model. Gene profling analysis using RNA-Seq revealed that PMA caused major changes in gene expression, whereas AJH-836 only induced a small subset of genes, thus providing a strong indication for a major involvement of cPKCs in their control of gene expression. MMP1, MMP9, and MMP10 were among the genes most prominently induced by PMA, an efect impaired by RNAi silencing of PKCα, but not PKCδ or PKCε. Comprehensive gene signature analysis and bioinformatics eforts, including functional enrichment and transcription factor binding site analyses of dysregulated genes, identifed major diferences in pathway activation and transcriptional networks between PMA and DAG-lactones. In addition to providing solid evidence for the diferential involvement of individual PKC isozymes in the control of gene expression, our studies emphasize the importance of generating targeted C1 domain ligands capable of diferentially regulating PKC isozyme-specifc function in cellular models.
Centro de Investigaciones Inmunológicas Básicas y Aplicadas
description Despite our extensive knowledge on the biology of protein kinase C (PKC) and its involvement in disease, limited success has been attained in the generation of PKC isozyme-specifc modulators acting via the C1 domain, the binding site for the lipid second messenger diacylglycerol (DAG) and the phorbol ester tumor promoters. Synthetic eforts had recently led to the identifcation of AJH-836, a DAG-lactone with preferential afnity for novel isozymes (nPKCs) relative to classical PKCs (cPKCs). Here, we compared the ability of AJH-836 and a prototypical phorbol ester (phorbol 12-myristate 13-acetate, PMA) to induce changes in gene expression in a lung cancer model. Gene profling analysis using RNA-Seq revealed that PMA caused major changes in gene expression, whereas AJH-836 only induced a small subset of genes, thus providing a strong indication for a major involvement of cPKCs in their control of gene expression. MMP1, MMP9, and MMP10 were among the genes most prominently induced by PMA, an efect impaired by RNAi silencing of PKCα, but not PKCδ or PKCε. Comprehensive gene signature analysis and bioinformatics eforts, including functional enrichment and transcription factor binding site analyses of dysregulated genes, identifed major diferences in pathway activation and transcriptional networks between PMA and DAG-lactones. In addition to providing solid evidence for the diferential involvement of individual PKC isozymes in the control of gene expression, our studies emphasize the importance of generating targeted C1 domain ligands capable of diferentially regulating PKC isozyme-specifc function in cellular models.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/107509
url http://sedici.unlp.edu.ar/handle/10915/107509
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC6465381&blobtype=pdf
info:eu-repo/semantics/altIdentifier/issn/2045-2322
info:eu-repo/semantics/altIdentifier/pmid/30988374
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-019-42581-4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616115592888320
score 13.070432