Hepatocellular Carcinoma tumor stage classification and gene selection using machine learning models
- Autores
- Palazzo, Martin; Beauseroy, Pierre; Yankilevich, Patricio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Cancer researchers are facing the opportunity to analyze and learn from big quantities of omic profiles of tumor samples. Different omic data is now available in several databases and the bioinformatics data analysis and interpretation are current bottlenecks. In this study somatic mutations and gene expression data from Hepatocellular carcinoma tumor samples are used to discriminate by Kernel Learning between tumor subtypes and early and late stages. This classification will allow medical doctors to establish an appropriate treatment according to the tumor stage. By building kernel machines we could discriminate both classes with an acceptable classification accuracy. Feature selection have been implemented to select the key genes which differential expression improves the separability between the samples of early and late stages.
Special Issue dedicated to JAIIO 2018 (Jornadas Argentinas de Informática).
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Ciencias Médicas
Feature selection
Kernel Learning
Cancer Genomics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/135036
Ver los metadatos del registro completo
id |
SEDICI_6de1bd34ed7aa2176f9bfdf34c7bf18b |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/135036 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Hepatocellular Carcinoma tumor stage classification and gene selection using machine learning modelsPalazzo, MartinBeauseroy, PierreYankilevich, PatricioCiencias InformáticasCiencias MédicasFeature selectionKernel LearningCancer GenomicsCancer researchers are facing the opportunity to analyze and learn from big quantities of omic profiles of tumor samples. Different omic data is now available in several databases and the bioinformatics data analysis and interpretation are current bottlenecks. In this study somatic mutations and gene expression data from Hepatocellular carcinoma tumor samples are used to discriminate by Kernel Learning between tumor subtypes and early and late stages. This classification will allow medical doctors to establish an appropriate treatment according to the tumor stage. By building kernel machines we could discriminate both classes with an acceptable classification accuracy. Feature selection have been implemented to select the key genes which differential expression improves the separability between the samples of early and late stages.Special Issue dedicated to JAIIO 2018 (Jornadas Argentinas de Informática).Sociedad Argentina de Informática e Investigación Operativa2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf26-42http://sedici.unlp.edu.ar/handle/10915/135036enginfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/83info:eu-repo/semantics/altIdentifier/issn/1514-6774info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:25:51Zoai:sedici.unlp.edu.ar:10915/135036Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:25:51.516SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Hepatocellular Carcinoma tumor stage classification and gene selection using machine learning models |
title |
Hepatocellular Carcinoma tumor stage classification and gene selection using machine learning models |
spellingShingle |
Hepatocellular Carcinoma tumor stage classification and gene selection using machine learning models Palazzo, Martin Ciencias Informáticas Ciencias Médicas Feature selection Kernel Learning Cancer Genomics |
title_short |
Hepatocellular Carcinoma tumor stage classification and gene selection using machine learning models |
title_full |
Hepatocellular Carcinoma tumor stage classification and gene selection using machine learning models |
title_fullStr |
Hepatocellular Carcinoma tumor stage classification and gene selection using machine learning models |
title_full_unstemmed |
Hepatocellular Carcinoma tumor stage classification and gene selection using machine learning models |
title_sort |
Hepatocellular Carcinoma tumor stage classification and gene selection using machine learning models |
dc.creator.none.fl_str_mv |
Palazzo, Martin Beauseroy, Pierre Yankilevich, Patricio |
author |
Palazzo, Martin |
author_facet |
Palazzo, Martin Beauseroy, Pierre Yankilevich, Patricio |
author_role |
author |
author2 |
Beauseroy, Pierre Yankilevich, Patricio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Ciencias Médicas Feature selection Kernel Learning Cancer Genomics |
topic |
Ciencias Informáticas Ciencias Médicas Feature selection Kernel Learning Cancer Genomics |
dc.description.none.fl_txt_mv |
Cancer researchers are facing the opportunity to analyze and learn from big quantities of omic profiles of tumor samples. Different omic data is now available in several databases and the bioinformatics data analysis and interpretation are current bottlenecks. In this study somatic mutations and gene expression data from Hepatocellular carcinoma tumor samples are used to discriminate by Kernel Learning between tumor subtypes and early and late stages. This classification will allow medical doctors to establish an appropriate treatment according to the tumor stage. By building kernel machines we could discriminate both classes with an acceptable classification accuracy. Feature selection have been implemented to select the key genes which differential expression improves the separability between the samples of early and late stages. Special Issue dedicated to JAIIO 2018 (Jornadas Argentinas de Informática). Sociedad Argentina de Informática e Investigación Operativa |
description |
Cancer researchers are facing the opportunity to analyze and learn from big quantities of omic profiles of tumor samples. Different omic data is now available in several databases and the bioinformatics data analysis and interpretation are current bottlenecks. In this study somatic mutations and gene expression data from Hepatocellular carcinoma tumor samples are used to discriminate by Kernel Learning between tumor subtypes and early and late stages. This classification will allow medical doctors to establish an appropriate treatment according to the tumor stage. By building kernel machines we could discriminate both classes with an acceptable classification accuracy. Feature selection have been implemented to select the key genes which differential expression improves the separability between the samples of early and late stages. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/135036 |
url |
http://sedici.unlp.edu.ar/handle/10915/135036 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/83 info:eu-repo/semantics/altIdentifier/issn/1514-6774 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 26-42 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064309449261056 |
score |
13.22299 |