MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics

Autores
Martínez, María Jimena; Razuc, Marina; Ponzoni, Ignacio
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The selection of the most relevant molecular descriptors to describe a target variable in the context of QSAR (Quantitative Structure-Activity Relationship) modelling is a challenging combinatorial optimization problem. In this paper, a novel software tool for addressing this task in the context of regression and classification modelling is presented. The methodology that implements the tool is organized into two phases. The first phase uses a multiobjective evolutionary technique to perform the selection of subsets of descriptors. The second phase performs an external validation of the chosen descriptors subsets in order to improve reliability. The tool functionalities have been illustrated through a case study for the estimation of the ready biodegradation property as an example of classification QSAR modelling. The results obtained show the usefulness and potential of this novel software tool that aims to reduce the time and costs of development in the drug discovery process.
Fil: Martínez, María Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Razuc, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Materia
Machine Learning
QSAR
Feature Selection
Molecular Informatics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100073

id CONICETDig_0d52c69ecacebb52671a3622827724cd
oai_identifier_str oai:ri.conicet.gov.ar:11336/100073
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informaticsMartínez, María JimenaRazuc, MarinaPonzoni, IgnacioMachine LearningQSARFeature SelectionMolecular Informaticshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The selection of the most relevant molecular descriptors to describe a target variable in the context of QSAR (Quantitative Structure-Activity Relationship) modelling is a challenging combinatorial optimization problem. In this paper, a novel software tool for addressing this task in the context of regression and classification modelling is presented. The methodology that implements the tool is organized into two phases. The first phase uses a multiobjective evolutionary technique to perform the selection of subsets of descriptors. The second phase performs an external validation of the chosen descriptors subsets in order to improve reliability. The tool functionalities have been illustrated through a case study for the estimation of the ready biodegradation property as an example of classification QSAR modelling. The results obtained show the usefulness and potential of this novel software tool that aims to reduce the time and costs of development in the drug discovery process.Fil: Martínez, María Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Razuc, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaHindawi Publishing Corporation2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100073Martínez, María Jimena; Razuc, Marina; Ponzoni, Ignacio; MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics; Hindawi Publishing Corporation; BioMed Research International; 2019; 2-2019; 1-122314-61332314-6141CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1155/2019/2905203info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/bmri/2019/2905203/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:08:49Zoai:ri.conicet.gov.ar:11336/100073instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:08:49.668CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics
title MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics
spellingShingle MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics
Martínez, María Jimena
Machine Learning
QSAR
Feature Selection
Molecular Informatics
title_short MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics
title_full MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics
title_fullStr MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics
title_full_unstemmed MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics
title_sort MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics
dc.creator.none.fl_str_mv Martínez, María Jimena
Razuc, Marina
Ponzoni, Ignacio
author Martínez, María Jimena
author_facet Martínez, María Jimena
Razuc, Marina
Ponzoni, Ignacio
author_role author
author2 Razuc, Marina
Ponzoni, Ignacio
author2_role author
author
dc.subject.none.fl_str_mv Machine Learning
QSAR
Feature Selection
Molecular Informatics
topic Machine Learning
QSAR
Feature Selection
Molecular Informatics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The selection of the most relevant molecular descriptors to describe a target variable in the context of QSAR (Quantitative Structure-Activity Relationship) modelling is a challenging combinatorial optimization problem. In this paper, a novel software tool for addressing this task in the context of regression and classification modelling is presented. The methodology that implements the tool is organized into two phases. The first phase uses a multiobjective evolutionary technique to perform the selection of subsets of descriptors. The second phase performs an external validation of the chosen descriptors subsets in order to improve reliability. The tool functionalities have been illustrated through a case study for the estimation of the ready biodegradation property as an example of classification QSAR modelling. The results obtained show the usefulness and potential of this novel software tool that aims to reduce the time and costs of development in the drug discovery process.
Fil: Martínez, María Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Razuc, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
description The selection of the most relevant molecular descriptors to describe a target variable in the context of QSAR (Quantitative Structure-Activity Relationship) modelling is a challenging combinatorial optimization problem. In this paper, a novel software tool for addressing this task in the context of regression and classification modelling is presented. The methodology that implements the tool is organized into two phases. The first phase uses a multiobjective evolutionary technique to perform the selection of subsets of descriptors. The second phase performs an external validation of the chosen descriptors subsets in order to improve reliability. The tool functionalities have been illustrated through a case study for the estimation of the ready biodegradation property as an example of classification QSAR modelling. The results obtained show the usefulness and potential of this novel software tool that aims to reduce the time and costs of development in the drug discovery process.
publishDate 2019
dc.date.none.fl_str_mv 2019-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100073
Martínez, María Jimena; Razuc, Marina; Ponzoni, Ignacio; MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics; Hindawi Publishing Corporation; BioMed Research International; 2019; 2-2019; 1-12
2314-6133
2314-6141
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100073
identifier_str_mv Martínez, María Jimena; Razuc, Marina; Ponzoni, Ignacio; MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics; Hindawi Publishing Corporation; BioMed Research International; 2019; 2-2019; 1-12
2314-6133
2314-6141
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1155/2019/2905203
info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/bmri/2019/2905203/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Hindawi Publishing Corporation
publisher.none.fl_str_mv Hindawi Publishing Corporation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083235345334272
score 13.22299