Tailoring of alginate-gelatin microspheres properties for oral Ciprofloxacin-controlled release against Pseudomonas aeruginosa

Autores
Islan, Germán Abel; Castro, Guillermo Raúl
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context: Ciprofloxacin (Cip) is a broad spectrum antibiotic frequently used in the treatment of infectious diseases caused by Pseudomonas aeruginosa. Cip oral administration is commonly associated with poor drug biodisponibility, gastrointestinal tract irritation, and toxic undesirable side effects. Objective: The aim of this work is to provide an oral biopolymeric system for controlled release of Cip. Materials and methods: Alginate-gelatin blend microspheres were crosslinked in the presence of 1,2-propylene glycol, calcium, and glutaraldehyde. Studies of Cip encapsulation and release were performed. Matrix characteristics were studied simultaneously by optical microscopy and Fourier transform infrared spectroscopy (FTIR) using synchrotron light, and by texturometric analysis. Microsphere surface topologies were observed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and epifluorescence microscopy. Results: Microspheres crosslinked with glutaraldehyde showed about 80% Cip encapsulation and less than 10% Cip release under simulated gastric conditions in 15min, while a controlled release profile was observed at intestinal environment conditions. Antimicrobial activity against P. aeruginosa showed an increasing bacterial growth inhibition in time. Finally, bovine serum albumin (BSA) was used as model protein for binding of macromolecules onto active surface of microspheres, with a consequently modulation of Cip release. Discussion and conclusions: The results are indicating that alginate/gelatin matrix crosslinked via Ca2+ and glutaraldehyde can be tailored by decorating the microsphere surface with biological active molecules useful for targeting, making a potential tool to improve Cip oral administration for infection diseases.
Centro de Investigación y Desarrollo en Fermentaciones Industriales
Materia
Química
AFM
Biopolymers
Gelatin
Lends
Pectin
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/85193

id SEDICI_6bd588e2b84afa5751eae5fb3ebfe8f5
oai_identifier_str oai:sedici.unlp.edu.ar:10915/85193
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Tailoring of alginate-gelatin microspheres properties for oral Ciprofloxacin-controlled release against Pseudomonas aeruginosaIslan, Germán AbelCastro, Guillermo RaúlQuímicaAFMBiopolymersGelatinLendsPectinContext: Ciprofloxacin (Cip) is a broad spectrum antibiotic frequently used in the treatment of infectious diseases caused by Pseudomonas aeruginosa. Cip oral administration is commonly associated with poor drug biodisponibility, gastrointestinal tract irritation, and toxic undesirable side effects. Objective: The aim of this work is to provide an oral biopolymeric system for controlled release of Cip. Materials and methods: Alginate-gelatin blend microspheres were crosslinked in the presence of 1,2-propylene glycol, calcium, and glutaraldehyde. Studies of Cip encapsulation and release were performed. Matrix characteristics were studied simultaneously by optical microscopy and Fourier transform infrared spectroscopy (FTIR) using synchrotron light, and by texturometric analysis. Microsphere surface topologies were observed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and epifluorescence microscopy. Results: Microspheres crosslinked with glutaraldehyde showed about 80% Cip encapsulation and less than 10% Cip release under simulated gastric conditions in 15min, while a controlled release profile was observed at intestinal environment conditions. Antimicrobial activity against P. aeruginosa showed an increasing bacterial growth inhibition in time. Finally, bovine serum albumin (BSA) was used as model protein for binding of macromolecules onto active surface of microspheres, with a consequently modulation of Cip release. Discussion and conclusions: The results are indicating that alginate/gelatin matrix crosslinked via Ca2+ and glutaraldehyde can be tailored by decorating the microsphere surface with biological active molecules useful for targeting, making a potential tool to improve Cip oral administration for infection diseases.Centro de Investigación y Desarrollo en Fermentaciones Industriales2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf615-626http://sedici.unlp.edu.ar/handle/10915/85193enginfo:eu-repo/semantics/altIdentifier/issn/1071-7544info:eu-repo/semantics/altIdentifier/doi/10.3109/10717544.2013.870257info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:25Zoai:sedici.unlp.edu.ar:10915/85193Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:26.05SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Tailoring of alginate-gelatin microspheres properties for oral Ciprofloxacin-controlled release against Pseudomonas aeruginosa
title Tailoring of alginate-gelatin microspheres properties for oral Ciprofloxacin-controlled release against Pseudomonas aeruginosa
spellingShingle Tailoring of alginate-gelatin microspheres properties for oral Ciprofloxacin-controlled release against Pseudomonas aeruginosa
Islan, Germán Abel
Química
AFM
Biopolymers
Gelatin
Lends
Pectin
title_short Tailoring of alginate-gelatin microspheres properties for oral Ciprofloxacin-controlled release against Pseudomonas aeruginosa
title_full Tailoring of alginate-gelatin microspheres properties for oral Ciprofloxacin-controlled release against Pseudomonas aeruginosa
title_fullStr Tailoring of alginate-gelatin microspheres properties for oral Ciprofloxacin-controlled release against Pseudomonas aeruginosa
title_full_unstemmed Tailoring of alginate-gelatin microspheres properties for oral Ciprofloxacin-controlled release against Pseudomonas aeruginosa
title_sort Tailoring of alginate-gelatin microspheres properties for oral Ciprofloxacin-controlled release against Pseudomonas aeruginosa
dc.creator.none.fl_str_mv Islan, Germán Abel
Castro, Guillermo Raúl
author Islan, Germán Abel
author_facet Islan, Germán Abel
Castro, Guillermo Raúl
author_role author
author2 Castro, Guillermo Raúl
author2_role author
dc.subject.none.fl_str_mv Química
AFM
Biopolymers
Gelatin
Lends
Pectin
topic Química
AFM
Biopolymers
Gelatin
Lends
Pectin
dc.description.none.fl_txt_mv Context: Ciprofloxacin (Cip) is a broad spectrum antibiotic frequently used in the treatment of infectious diseases caused by Pseudomonas aeruginosa. Cip oral administration is commonly associated with poor drug biodisponibility, gastrointestinal tract irritation, and toxic undesirable side effects. Objective: The aim of this work is to provide an oral biopolymeric system for controlled release of Cip. Materials and methods: Alginate-gelatin blend microspheres were crosslinked in the presence of 1,2-propylene glycol, calcium, and glutaraldehyde. Studies of Cip encapsulation and release were performed. Matrix characteristics were studied simultaneously by optical microscopy and Fourier transform infrared spectroscopy (FTIR) using synchrotron light, and by texturometric analysis. Microsphere surface topologies were observed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and epifluorescence microscopy. Results: Microspheres crosslinked with glutaraldehyde showed about 80% Cip encapsulation and less than 10% Cip release under simulated gastric conditions in 15min, while a controlled release profile was observed at intestinal environment conditions. Antimicrobial activity against P. aeruginosa showed an increasing bacterial growth inhibition in time. Finally, bovine serum albumin (BSA) was used as model protein for binding of macromolecules onto active surface of microspheres, with a consequently modulation of Cip release. Discussion and conclusions: The results are indicating that alginate/gelatin matrix crosslinked via Ca2+ and glutaraldehyde can be tailored by decorating the microsphere surface with biological active molecules useful for targeting, making a potential tool to improve Cip oral administration for infection diseases.
Centro de Investigación y Desarrollo en Fermentaciones Industriales
description Context: Ciprofloxacin (Cip) is a broad spectrum antibiotic frequently used in the treatment of infectious diseases caused by Pseudomonas aeruginosa. Cip oral administration is commonly associated with poor drug biodisponibility, gastrointestinal tract irritation, and toxic undesirable side effects. Objective: The aim of this work is to provide an oral biopolymeric system for controlled release of Cip. Materials and methods: Alginate-gelatin blend microspheres were crosslinked in the presence of 1,2-propylene glycol, calcium, and glutaraldehyde. Studies of Cip encapsulation and release were performed. Matrix characteristics were studied simultaneously by optical microscopy and Fourier transform infrared spectroscopy (FTIR) using synchrotron light, and by texturometric analysis. Microsphere surface topologies were observed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and epifluorescence microscopy. Results: Microspheres crosslinked with glutaraldehyde showed about 80% Cip encapsulation and less than 10% Cip release under simulated gastric conditions in 15min, while a controlled release profile was observed at intestinal environment conditions. Antimicrobial activity against P. aeruginosa showed an increasing bacterial growth inhibition in time. Finally, bovine serum albumin (BSA) was used as model protein for binding of macromolecules onto active surface of microspheres, with a consequently modulation of Cip release. Discussion and conclusions: The results are indicating that alginate/gelatin matrix crosslinked via Ca2+ and glutaraldehyde can be tailored by decorating the microsphere surface with biological active molecules useful for targeting, making a potential tool to improve Cip oral administration for infection diseases.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/85193
url http://sedici.unlp.edu.ar/handle/10915/85193
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1071-7544
info:eu-repo/semantics/altIdentifier/doi/10.3109/10717544.2013.870257
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
615-626
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616036989534208
score 13.070432