Segmentação de imagens ecocardiográficas utilizando mapas de Kohonen
- Autores
- Piccoli, Luciano; Navaux, Philippe O. A.; Gasperin, Caroline
- Año de publicación
- 1998
- Idioma
- portugués
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Este artigo apresena a utilização de mapas de Kohonen na segmentação de imagens médicas. As imagens utilizadas tratam-se de ecocaediogramas de fetos humanos. Este exames são de grande importaância, pois tratam de informar se um feto terá ou terá ou não problemas cardíacos durante sua evolução. O processo de segmentação auxilia no reconhecimiento das bordas do coração, possibilitando que problemas graves sejam tratados com grande antecedência, evitando-se possíveis situações perigrosas mais tarde. Para auxiliar na tarefa de diagnosticar problemas cardíacos, a segmentação da imagem ecocardigráfica representa método mais adequado, sendo capaz de delimitar as cavidades do coração. Entretanto, atualmente, os chamados métodos convencionais não conseguem realizar esta tarefa satisfatoriamente. Isto deve-se as características intrínsecas às imagens ecocardiogáficas, como a nitidez limitada. Como alternativa a esta situação, propõe-se a utilização dos maas de Kohonen [KOH89, KOH90]. Mapas de Kohonen são struturas organizadas, geralmente em forma matricial, que são capazes de realizar tarefas semelhantes às do cérebro humano. Assim como cérebro, onde existem regiões responsáveis pela fala, audição, entre outros, os mapas realizam o agrupamento de conhecimientos em regiões. Pode-se dizer que os mapas de Kohonen realizam uma redução dimensional do problema para duas dimensões, no caso de mapas didimensionais. Após treinamento do mapa através de apresentação de amotras de imagens ecocardiográficas, definem-se regiões distintas, cada qual capaz de reconhecer estruturas diferentes do coração. Apartir do mapa treinado, é necessária a definição das regiões nele surgidas. Para tanto, utiliza-se o método de clusterização de imagens proposto por Coleman e Andrews [COL79]. Este método define o melhor numero de clusters através da avaliação de um parâmetro de qualidade dos clusters (b). O critério utilizado é o produto entre as matrizes de disperção entre clusters e intra clusters. Os resultados obtidos apresentam-se bons em relação a qualidade e ao tempo de processamento, sendo que as imagens resultantes mostram as cavidades cardíacas bem delimitadas.
Computación Gráfica y Visualización
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Informática
mapas de kohonen
clusterizaçao
ecocardiografía
segmentaçao
Hypertext navigation and maps
Clustering
Medicine and science - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/24010
Ver los metadatos del registro completo
id |
SEDICI_6bc6fec5acf03d991bf9ae2c0a4fb6d8 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/24010 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Segmentação de imagens ecocardiográficas utilizando mapas de KohonenPiccoli, LucianoNavaux, Philippe O. A.Gasperin, CarolineCiencias InformáticasInformáticamapas de kohonenclusterizaçaoecocardiografíasegmentaçaoHypertext navigation and mapsClusteringMedicine and scienceEste artigo apresena a utilização de mapas de Kohonen na segmentação de imagens médicas. As imagens utilizadas tratam-se de ecocaediogramas de fetos humanos. Este exames são de grande importaância, pois tratam de informar se um feto terá ou terá ou não problemas cardíacos durante sua evolução. O processo de segmentação auxilia no reconhecimiento das bordas do coração, possibilitando que problemas graves sejam tratados com grande antecedência, evitando-se possíveis situações perigrosas mais tarde. Para auxiliar na tarefa de diagnosticar problemas cardíacos, a segmentação da imagem ecocardigráfica representa método mais adequado, sendo capaz de delimitar as cavidades do coração. Entretanto, atualmente, os chamados métodos convencionais não conseguem realizar esta tarefa satisfatoriamente. Isto deve-se as características intrínsecas às imagens ecocardiogáficas, como a nitidez limitada. Como alternativa a esta situação, propõe-se a utilização dos maas de Kohonen [KOH89, KOH90]. Mapas de Kohonen são struturas organizadas, geralmente em forma matricial, que são capazes de realizar tarefas semelhantes às do cérebro humano. Assim como cérebro, onde existem regiões responsáveis pela fala, audição, entre outros, os mapas realizam o agrupamento de conhecimientos em regiões. Pode-se dizer que os mapas de Kohonen realizam uma redução dimensional do problema para duas dimensões, no caso de mapas didimensionais. Após treinamento do mapa através de apresentação de amotras de imagens ecocardiográficas, definem-se regiões distintas, cada qual capaz de reconhecer estruturas diferentes do coração. Apartir do mapa treinado, é necessária a definição das regiões nele surgidas. Para tanto, utiliza-se o método de clusterização de imagens proposto por Coleman e Andrews [COL79]. Este método define o melhor numero de clusters através da avaliação de um parâmetro de qualidade dos clusters (b). O critério utilizado é o produto entre as matrizes de disperção entre clusters e intra clusters. Os resultados obtidos apresentam-se bons em relação a qualidade e ao tempo de processamento, sendo que as imagens resultantes mostram as cavidades cardíacas bem delimitadas.Computación Gráfica y VisualizaciónRed de Universidades con Carreras en Informática (RedUNCI)1998-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24010info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)porreponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:40Zoai:sedici.unlp.edu.ar:10915/24010Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:40.521SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Segmentação de imagens ecocardiográficas utilizando mapas de Kohonen |
title |
Segmentação de imagens ecocardiográficas utilizando mapas de Kohonen |
spellingShingle |
Segmentação de imagens ecocardiográficas utilizando mapas de Kohonen Piccoli, Luciano Ciencias Informáticas Informática mapas de kohonen clusterizaçao ecocardiografía segmentaçao Hypertext navigation and maps Clustering Medicine and science |
title_short |
Segmentação de imagens ecocardiográficas utilizando mapas de Kohonen |
title_full |
Segmentação de imagens ecocardiográficas utilizando mapas de Kohonen |
title_fullStr |
Segmentação de imagens ecocardiográficas utilizando mapas de Kohonen |
title_full_unstemmed |
Segmentação de imagens ecocardiográficas utilizando mapas de Kohonen |
title_sort |
Segmentação de imagens ecocardiográficas utilizando mapas de Kohonen |
dc.creator.none.fl_str_mv |
Piccoli, Luciano Navaux, Philippe O. A. Gasperin, Caroline |
author |
Piccoli, Luciano |
author_facet |
Piccoli, Luciano Navaux, Philippe O. A. Gasperin, Caroline |
author_role |
author |
author2 |
Navaux, Philippe O. A. Gasperin, Caroline |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Informática mapas de kohonen clusterizaçao ecocardiografía segmentaçao Hypertext navigation and maps Clustering Medicine and science |
topic |
Ciencias Informáticas Informática mapas de kohonen clusterizaçao ecocardiografía segmentaçao Hypertext navigation and maps Clustering Medicine and science |
dc.description.none.fl_txt_mv |
Este artigo apresena a utilização de mapas de Kohonen na segmentação de imagens médicas. As imagens utilizadas tratam-se de ecocaediogramas de fetos humanos. Este exames são de grande importaância, pois tratam de informar se um feto terá ou terá ou não problemas cardíacos durante sua evolução. O processo de segmentação auxilia no reconhecimiento das bordas do coração, possibilitando que problemas graves sejam tratados com grande antecedência, evitando-se possíveis situações perigrosas mais tarde. Para auxiliar na tarefa de diagnosticar problemas cardíacos, a segmentação da imagem ecocardigráfica representa método mais adequado, sendo capaz de delimitar as cavidades do coração. Entretanto, atualmente, os chamados métodos convencionais não conseguem realizar esta tarefa satisfatoriamente. Isto deve-se as características intrínsecas às imagens ecocardiogáficas, como a nitidez limitada. Como alternativa a esta situação, propõe-se a utilização dos maas de Kohonen [KOH89, KOH90]. Mapas de Kohonen são struturas organizadas, geralmente em forma matricial, que são capazes de realizar tarefas semelhantes às do cérebro humano. Assim como cérebro, onde existem regiões responsáveis pela fala, audição, entre outros, os mapas realizam o agrupamento de conhecimientos em regiões. Pode-se dizer que os mapas de Kohonen realizam uma redução dimensional do problema para duas dimensões, no caso de mapas didimensionais. Após treinamento do mapa através de apresentação de amotras de imagens ecocardiográficas, definem-se regiões distintas, cada qual capaz de reconhecer estruturas diferentes do coração. Apartir do mapa treinado, é necessária a definição das regiões nele surgidas. Para tanto, utiliza-se o método de clusterização de imagens proposto por Coleman e Andrews [COL79]. Este método define o melhor numero de clusters através da avaliação de um parâmetro de qualidade dos clusters (b). O critério utilizado é o produto entre as matrizes de disperção entre clusters e intra clusters. Os resultados obtidos apresentam-se bons em relação a qualidade e ao tempo de processamento, sendo que as imagens resultantes mostram as cavidades cardíacas bem delimitadas. Computación Gráfica y Visualización Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Este artigo apresena a utilização de mapas de Kohonen na segmentação de imagens médicas. As imagens utilizadas tratam-se de ecocaediogramas de fetos humanos. Este exames são de grande importaância, pois tratam de informar se um feto terá ou terá ou não problemas cardíacos durante sua evolução. O processo de segmentação auxilia no reconhecimiento das bordas do coração, possibilitando que problemas graves sejam tratados com grande antecedência, evitando-se possíveis situações perigrosas mais tarde. Para auxiliar na tarefa de diagnosticar problemas cardíacos, a segmentação da imagem ecocardigráfica representa método mais adequado, sendo capaz de delimitar as cavidades do coração. Entretanto, atualmente, os chamados métodos convencionais não conseguem realizar esta tarefa satisfatoriamente. Isto deve-se as características intrínsecas às imagens ecocardiogáficas, como a nitidez limitada. Como alternativa a esta situação, propõe-se a utilização dos maas de Kohonen [KOH89, KOH90]. Mapas de Kohonen são struturas organizadas, geralmente em forma matricial, que são capazes de realizar tarefas semelhantes às do cérebro humano. Assim como cérebro, onde existem regiões responsáveis pela fala, audição, entre outros, os mapas realizam o agrupamento de conhecimientos em regiões. Pode-se dizer que os mapas de Kohonen realizam uma redução dimensional do problema para duas dimensões, no caso de mapas didimensionais. Após treinamento do mapa através de apresentação de amotras de imagens ecocardiográficas, definem-se regiões distintas, cada qual capaz de reconhecer estruturas diferentes do coração. Apartir do mapa treinado, é necessária a definição das regiões nele surgidas. Para tanto, utiliza-se o método de clusterização de imagens proposto por Coleman e Andrews [COL79]. Este método define o melhor numero de clusters através da avaliação de um parâmetro de qualidade dos clusters (b). O critério utilizado é o produto entre as matrizes de disperção entre clusters e intra clusters. Os resultados obtidos apresentam-se bons em relação a qualidade e ao tempo de processamento, sendo que as imagens resultantes mostram as cavidades cardíacas bem delimitadas. |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/24010 |
url |
http://sedici.unlp.edu.ar/handle/10915/24010 |
dc.language.none.fl_str_mv |
por |
language |
por |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615815817592832 |
score |
13.069144 |