Vertex discard occlusion culling
- Autores
- Barbagallo, Leandro R.; Leone, Matias N.; García, Rodrigo N
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Performing visibility determination in densely occluded environments is essential to avoid rendering unnecessary objects and achieve high frame rates. In this work we present an implementation of the image space Occlusion Culling algorithm done completely in GPU, avoiding the latency introduced by returning the visibility results to the CPU. Our algorithm utilizes the GPU rendering power to construct the Occlusion Map and then performs the image space visibility test by splitting the region of the screen space occludees into parallelizable blocks. Our implementation is especially applicable for lowend graphics hardware and the visibility results are accessible by GPU shaders. It can be applied with excellent results in scenes where pixel shaders alter the depth values of the pixels, without interfering with hardware Early-Z culling methods. We demonstrate the benefits and show the results of this method in real-time densely occluded scenes.
WCGIV - XI Workshop computación gráfica, imágenes y visualización
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
occlusion culling
visibility determination
CPU
shaders - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/31657
Ver los metadatos del registro completo
id |
SEDICI_6b8e7efdd25268fc5d2ec387b914000c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/31657 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Vertex discard occlusion cullingBarbagallo, Leandro R.Leone, Matias N.García, Rodrigo NCiencias Informáticasocclusion cullingvisibility determinationCPUshadersPerforming visibility determination in densely occluded environments is essential to avoid rendering unnecessary objects and achieve high frame rates. In this work we present an implementation of the image space Occlusion Culling algorithm done completely in GPU, avoiding the latency introduced by returning the visibility results to the CPU. Our algorithm utilizes the GPU rendering power to construct the Occlusion Map and then performs the image space visibility test by splitting the region of the screen space occludees into parallelizable blocks. Our implementation is especially applicable for lowend graphics hardware and the visibility results are accessible by GPU shaders. It can be applied with excellent results in scenes where pixel shaders alter the depth values of the pixels, without interfering with hardware Early-Z culling methods. We demonstrate the benefits and show the results of this method in real-time densely occluded scenes.WCGIV - XI Workshop computación gráfica, imágenes y visualizaciónRed de Universidades con Carreras en Informática (RedUNCI)2013-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/31657enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:58:01Zoai:sedici.unlp.edu.ar:10915/31657Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:58:02.0SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Vertex discard occlusion culling |
title |
Vertex discard occlusion culling |
spellingShingle |
Vertex discard occlusion culling Barbagallo, Leandro R. Ciencias Informáticas occlusion culling visibility determination CPU shaders |
title_short |
Vertex discard occlusion culling |
title_full |
Vertex discard occlusion culling |
title_fullStr |
Vertex discard occlusion culling |
title_full_unstemmed |
Vertex discard occlusion culling |
title_sort |
Vertex discard occlusion culling |
dc.creator.none.fl_str_mv |
Barbagallo, Leandro R. Leone, Matias N. García, Rodrigo N |
author |
Barbagallo, Leandro R. |
author_facet |
Barbagallo, Leandro R. Leone, Matias N. García, Rodrigo N |
author_role |
author |
author2 |
Leone, Matias N. García, Rodrigo N |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas occlusion culling visibility determination CPU shaders |
topic |
Ciencias Informáticas occlusion culling visibility determination CPU shaders |
dc.description.none.fl_txt_mv |
Performing visibility determination in densely occluded environments is essential to avoid rendering unnecessary objects and achieve high frame rates. In this work we present an implementation of the image space Occlusion Culling algorithm done completely in GPU, avoiding the latency introduced by returning the visibility results to the CPU. Our algorithm utilizes the GPU rendering power to construct the Occlusion Map and then performs the image space visibility test by splitting the region of the screen space occludees into parallelizable blocks. Our implementation is especially applicable for lowend graphics hardware and the visibility results are accessible by GPU shaders. It can be applied with excellent results in scenes where pixel shaders alter the depth values of the pixels, without interfering with hardware Early-Z culling methods. We demonstrate the benefits and show the results of this method in real-time densely occluded scenes. WCGIV - XI Workshop computación gráfica, imágenes y visualización Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Performing visibility determination in densely occluded environments is essential to avoid rendering unnecessary objects and achieve high frame rates. In this work we present an implementation of the image space Occlusion Culling algorithm done completely in GPU, avoiding the latency introduced by returning the visibility results to the CPU. Our algorithm utilizes the GPU rendering power to construct the Occlusion Map and then performs the image space visibility test by splitting the region of the screen space occludees into parallelizable blocks. Our implementation is especially applicable for lowend graphics hardware and the visibility results are accessible by GPU shaders. It can be applied with excellent results in scenes where pixel shaders alter the depth values of the pixels, without interfering with hardware Early-Z culling methods. We demonstrate the benefits and show the results of this method in real-time densely occluded scenes. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/31657 |
url |
http://sedici.unlp.edu.ar/handle/10915/31657 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615842788016128 |
score |
13.070432 |