An ACO approach for the parallel machines scheduling problem
- Autores
- Gatica, Claudia Ruth; Esquivel, Susana Cecilia; Leguizamon, Mario Guillermo
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The parallel machines scheduling problem (PMSP) comprises the allocation of jobs on the resources of the systems, i.e., a group of machines in parallel. The basic model consists of m identical machines and n jobs. The jobs are assigned according to resource availability following some allocation rule. In this work, we apply the Ant Colony Optimization (ACO) metaheuristic which includes four different specific heuristics in the solution construction process to solve unrestricted PMSP for the minimization of the Maximum Tardiness (Tmax) objective. We also present a comparison of previous results obtained by a simple Genetic Algorithm (GAs), and an evidence of an improved performance of the ACO metaheuristic on this particular scheduling problem.
Fil: Gatica, Claudia Ruth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina
Fil: Esquivel, Susana Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina
Fil: Leguizamon, Mario Guillermo. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina - Materia
-
PARALLEL MACHINE SCHEDULING
MAXIMUM TARDINESS
ANT COLONY OPTIMIZATION ALGORITHMS
SPECIFIC HEURISTIC PROBLEM INFORMATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/158911
Ver los metadatos del registro completo
id |
CONICETDig_a2f1658fb47195fd7f6aefe7f33d3048 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/158911 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An ACO approach for the parallel machines scheduling problemGatica, Claudia RuthEsquivel, Susana CeciliaLeguizamon, Mario GuillermoPARALLEL MACHINE SCHEDULINGMAXIMUM TARDINESSANT COLONY OPTIMIZATION ALGORITHMSSPECIFIC HEURISTIC PROBLEM INFORMATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The parallel machines scheduling problem (PMSP) comprises the allocation of jobs on the resources of the systems, i.e., a group of machines in parallel. The basic model consists of m identical machines and n jobs. The jobs are assigned according to resource availability following some allocation rule. In this work, we apply the Ant Colony Optimization (ACO) metaheuristic which includes four different specific heuristics in the solution construction process to solve unrestricted PMSP for the minimization of the Maximum Tardiness (Tmax) objective. We also present a comparison of previous results obtained by a simple Genetic Algorithm (GAs), and an evidence of an improved performance of the ACO metaheuristic on this particular scheduling problem.Fil: Gatica, Claudia Ruth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; ArgentinaFil: Esquivel, Susana Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; ArgentinaFil: Leguizamon, Mario Guillermo. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; ArgentinaSociedad Iberoamericana de Inteligencia Artificial2010-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/158911Gatica, Claudia Ruth; Esquivel, Susana Cecilia; Leguizamon, Mario Guillermo; An ACO approach for the parallel machines scheduling problem; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 14; 46; 6-2010; 84-951137-36011988-3064CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journal.iberamia.org/public/Vol.1-14.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:09Zoai:ri.conicet.gov.ar:11336/158911instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:09.811CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An ACO approach for the parallel machines scheduling problem |
title |
An ACO approach for the parallel machines scheduling problem |
spellingShingle |
An ACO approach for the parallel machines scheduling problem Gatica, Claudia Ruth PARALLEL MACHINE SCHEDULING MAXIMUM TARDINESS ANT COLONY OPTIMIZATION ALGORITHMS SPECIFIC HEURISTIC PROBLEM INFORMATION |
title_short |
An ACO approach for the parallel machines scheduling problem |
title_full |
An ACO approach for the parallel machines scheduling problem |
title_fullStr |
An ACO approach for the parallel machines scheduling problem |
title_full_unstemmed |
An ACO approach for the parallel machines scheduling problem |
title_sort |
An ACO approach for the parallel machines scheduling problem |
dc.creator.none.fl_str_mv |
Gatica, Claudia Ruth Esquivel, Susana Cecilia Leguizamon, Mario Guillermo |
author |
Gatica, Claudia Ruth |
author_facet |
Gatica, Claudia Ruth Esquivel, Susana Cecilia Leguizamon, Mario Guillermo |
author_role |
author |
author2 |
Esquivel, Susana Cecilia Leguizamon, Mario Guillermo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
PARALLEL MACHINE SCHEDULING MAXIMUM TARDINESS ANT COLONY OPTIMIZATION ALGORITHMS SPECIFIC HEURISTIC PROBLEM INFORMATION |
topic |
PARALLEL MACHINE SCHEDULING MAXIMUM TARDINESS ANT COLONY OPTIMIZATION ALGORITHMS SPECIFIC HEURISTIC PROBLEM INFORMATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The parallel machines scheduling problem (PMSP) comprises the allocation of jobs on the resources of the systems, i.e., a group of machines in parallel. The basic model consists of m identical machines and n jobs. The jobs are assigned according to resource availability following some allocation rule. In this work, we apply the Ant Colony Optimization (ACO) metaheuristic which includes four different specific heuristics in the solution construction process to solve unrestricted PMSP for the minimization of the Maximum Tardiness (Tmax) objective. We also present a comparison of previous results obtained by a simple Genetic Algorithm (GAs), and an evidence of an improved performance of the ACO metaheuristic on this particular scheduling problem. Fil: Gatica, Claudia Ruth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina Fil: Esquivel, Susana Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina Fil: Leguizamon, Mario Guillermo. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina |
description |
The parallel machines scheduling problem (PMSP) comprises the allocation of jobs on the resources of the systems, i.e., a group of machines in parallel. The basic model consists of m identical machines and n jobs. The jobs are assigned according to resource availability following some allocation rule. In this work, we apply the Ant Colony Optimization (ACO) metaheuristic which includes four different specific heuristics in the solution construction process to solve unrestricted PMSP for the minimization of the Maximum Tardiness (Tmax) objective. We also present a comparison of previous results obtained by a simple Genetic Algorithm (GAs), and an evidence of an improved performance of the ACO metaheuristic on this particular scheduling problem. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/158911 Gatica, Claudia Ruth; Esquivel, Susana Cecilia; Leguizamon, Mario Guillermo; An ACO approach for the parallel machines scheduling problem; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 14; 46; 6-2010; 84-95 1137-3601 1988-3064 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/158911 |
identifier_str_mv |
Gatica, Claudia Ruth; Esquivel, Susana Cecilia; Leguizamon, Mario Guillermo; An ACO approach for the parallel machines scheduling problem; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 14; 46; 6-2010; 84-95 1137-3601 1988-3064 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.iberamia.org/public/Vol.1-14.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sociedad Iberoamericana de Inteligencia Artificial |
publisher.none.fl_str_mv |
Sociedad Iberoamericana de Inteligencia Artificial |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614466192277504 |
score |
13.070432 |