A quantum-mechanical anharmonic oscillator with a most interesting spectrum
- Autores
- Amore, Paolo; Fernández, Francisco Marcelo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We revisit the problem posed by an anharmonic oscillator with a potential given by a polynomial function of the coordinate of degree six that depends on a parameter λ. The ground state can be obtained exactly and its energy E0 = 1 is independent of λ. This solution is valid only for λ > 0 because the eigenfunction is not square integrable otherwise. Here we show that the perturbation series for the expectation values are Padé and Borel–Padé summable for λ > 0. When λ < 0 the spectrum exhibits an infinite number of avoided crossings at each of which the eigenfunctions undergo dramatic changes in their spatial distribution that we analyse by means of the expectation values ⟨x2⟩.
Facultad de Ciencias Exactas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - Materia
-
Ciencias Exactas
Química
anharmonic oscillator
quasi-exactly solvable
perturbation theory
Padé summation
avoided crossings - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/109370
Ver los metadatos del registro completo
id |
SEDICI_69c1b05e95a776efa0bf8ee1d3d3af60 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/109370 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A quantum-mechanical anharmonic oscillator with a most interesting spectrumAmore, PaoloFernández, Francisco MarceloCiencias ExactasQuímicaanharmonic oscillatorquasi-exactly solvableperturbation theoryPadé summationavoided crossingsWe revisit the problem posed by an anharmonic oscillator with a potential given by a polynomial function of the coordinate of degree six that depends on a parameter λ. The ground state can be obtained exactly and its energy E<sub>0</sub> = 1 is independent of λ. This solution is valid only for λ > 0 because the eigenfunction is not square integrable otherwise. Here we show that the perturbation series for the expectation values are Padé and Borel–Padé summable for λ > 0. When λ < 0 the spectrum exhibits an infinite number of avoided crossings at each of which the eigenfunctions undergo dramatic changes in their spatial distribution that we analyse by means of the expectation values ⟨x<sup>2</sup>⟩.Facultad de Ciencias ExactasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1-9http://sedici.unlp.edu.ar/handle/10915/109370enginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0003491617301963info:eu-repo/semantics/altIdentifier/issn/0003-4916info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2017.07.007info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:24:47Zoai:sedici.unlp.edu.ar:10915/109370Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:24:47.408SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum |
title |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum |
spellingShingle |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum Amore, Paolo Ciencias Exactas Química anharmonic oscillator quasi-exactly solvable perturbation theory Padé summation avoided crossings |
title_short |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum |
title_full |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum |
title_fullStr |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum |
title_full_unstemmed |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum |
title_sort |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum |
dc.creator.none.fl_str_mv |
Amore, Paolo Fernández, Francisco Marcelo |
author |
Amore, Paolo |
author_facet |
Amore, Paolo Fernández, Francisco Marcelo |
author_role |
author |
author2 |
Fernández, Francisco Marcelo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Química anharmonic oscillator quasi-exactly solvable perturbation theory Padé summation avoided crossings |
topic |
Ciencias Exactas Química anharmonic oscillator quasi-exactly solvable perturbation theory Padé summation avoided crossings |
dc.description.none.fl_txt_mv |
We revisit the problem posed by an anharmonic oscillator with a potential given by a polynomial function of the coordinate of degree six that depends on a parameter λ. The ground state can be obtained exactly and its energy E<sub>0</sub> = 1 is independent of λ. This solution is valid only for λ > 0 because the eigenfunction is not square integrable otherwise. Here we show that the perturbation series for the expectation values are Padé and Borel–Padé summable for λ > 0. When λ < 0 the spectrum exhibits an infinite number of avoided crossings at each of which the eigenfunctions undergo dramatic changes in their spatial distribution that we analyse by means of the expectation values ⟨x<sup>2</sup>⟩. Facultad de Ciencias Exactas Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
description |
We revisit the problem posed by an anharmonic oscillator with a potential given by a polynomial function of the coordinate of degree six that depends on a parameter λ. The ground state can be obtained exactly and its energy E<sub>0</sub> = 1 is independent of λ. This solution is valid only for λ > 0 because the eigenfunction is not square integrable otherwise. Here we show that the perturbation series for the expectation values are Padé and Borel–Padé summable for λ > 0. When λ < 0 the spectrum exhibits an infinite number of avoided crossings at each of which the eigenfunctions undergo dramatic changes in their spatial distribution that we analyse by means of the expectation values ⟨x<sup>2</sup>⟩. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/109370 |
url |
http://sedici.unlp.edu.ar/handle/10915/109370 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0003491617301963 info:eu-repo/semantics/altIdentifier/issn/0003-4916 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2017.07.007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1-9 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616124817211392 |
score |
13.070432 |