A quantum-mechanical anharmonic oscillator with a most interesting spectrum
- Autores
- Amore, Paolo; Fernández, Francisco Marcelo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We revisit the problem posed by an anharmonic oscillator with a potential given by a polynomial function of the coordinate of degree six that depends on a parameter λ. The ground state can be obtained exactly and its energy E0=1 is independent of λ. This solution is valid only for λ>0 because the eigenfunction is not square integrable otherwise. Here we show that the perturbation series for the expectation values are Padé and Borel–Padé summable for λ>0. When λ<0 the spectrum exhibits an infinite number of avoided crossings at each of which the eigenfunctions undergo dramatic changes in their spatial distribution that we analyse by means of the expectation values 〈x2〉.
Fil: Amore, Paolo. Universidad de Colima; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
Anharmonic Oscillator
Avoided Crossings
Padé Summation
Perturbation Theory
Quasi-Exactly Solvable - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/63793
Ver los metadatos del registro completo
id |
CONICETDig_18353450db3906d9225833126974a2eb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/63793 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A quantum-mechanical anharmonic oscillator with a most interesting spectrumAmore, PaoloFernández, Francisco MarceloAnharmonic OscillatorAvoided CrossingsPadé SummationPerturbation TheoryQuasi-Exactly Solvablehttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We revisit the problem posed by an anharmonic oscillator with a potential given by a polynomial function of the coordinate of degree six that depends on a parameter λ. The ground state can be obtained exactly and its energy E0=1 is independent of λ. This solution is valid only for λ>0 because the eigenfunction is not square integrable otherwise. Here we show that the perturbation series for the expectation values are Padé and Borel–Padé summable for λ>0. When λ<0 the spectrum exhibits an infinite number of avoided crossings at each of which the eigenfunctions undergo dramatic changes in their spatial distribution that we analyse by means of the expectation values 〈x2〉.Fil: Amore, Paolo. Universidad de Colima; MéxicoFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaAcademic Press Inc Elsevier Science2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63793Amore, Paolo; Fernández, Francisco Marcelo; A quantum-mechanical anharmonic oscillator with a most interesting spectrum; Academic Press Inc Elsevier Science; Annals of Physics (New York); 385; 10-2017; 1-90003-4916CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2017.07.007info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003491617301963info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:18Zoai:ri.conicet.gov.ar:11336/63793instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:19.051CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum |
title |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum |
spellingShingle |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum Amore, Paolo Anharmonic Oscillator Avoided Crossings Padé Summation Perturbation Theory Quasi-Exactly Solvable |
title_short |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum |
title_full |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum |
title_fullStr |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum |
title_full_unstemmed |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum |
title_sort |
A quantum-mechanical anharmonic oscillator with a most interesting spectrum |
dc.creator.none.fl_str_mv |
Amore, Paolo Fernández, Francisco Marcelo |
author |
Amore, Paolo |
author_facet |
Amore, Paolo Fernández, Francisco Marcelo |
author_role |
author |
author2 |
Fernández, Francisco Marcelo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Anharmonic Oscillator Avoided Crossings Padé Summation Perturbation Theory Quasi-Exactly Solvable |
topic |
Anharmonic Oscillator Avoided Crossings Padé Summation Perturbation Theory Quasi-Exactly Solvable |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We revisit the problem posed by an anharmonic oscillator with a potential given by a polynomial function of the coordinate of degree six that depends on a parameter λ. The ground state can be obtained exactly and its energy E0=1 is independent of λ. This solution is valid only for λ>0 because the eigenfunction is not square integrable otherwise. Here we show that the perturbation series for the expectation values are Padé and Borel–Padé summable for λ>0. When λ<0 the spectrum exhibits an infinite number of avoided crossings at each of which the eigenfunctions undergo dramatic changes in their spatial distribution that we analyse by means of the expectation values 〈x2〉. Fil: Amore, Paolo. Universidad de Colima; México Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
description |
We revisit the problem posed by an anharmonic oscillator with a potential given by a polynomial function of the coordinate of degree six that depends on a parameter λ. The ground state can be obtained exactly and its energy E0=1 is independent of λ. This solution is valid only for λ>0 because the eigenfunction is not square integrable otherwise. Here we show that the perturbation series for the expectation values are Padé and Borel–Padé summable for λ>0. When λ<0 the spectrum exhibits an infinite number of avoided crossings at each of which the eigenfunctions undergo dramatic changes in their spatial distribution that we analyse by means of the expectation values 〈x2〉. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/63793 Amore, Paolo; Fernández, Francisco Marcelo; A quantum-mechanical anharmonic oscillator with a most interesting spectrum; Academic Press Inc Elsevier Science; Annals of Physics (New York); 385; 10-2017; 1-9 0003-4916 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/63793 |
identifier_str_mv |
Amore, Paolo; Fernández, Francisco Marcelo; A quantum-mechanical anharmonic oscillator with a most interesting spectrum; Academic Press Inc Elsevier Science; Annals of Physics (New York); 385; 10-2017; 1-9 0003-4916 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2017.07.007 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003491617301963 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613099045257216 |
score |
13.070432 |