Deep Learning Architecture for Forest Detection in Satellite Data
- Autores
- Caffaratti, Gabriel D.; Marchetta, Martín G.; Forradellas Martinez, Raymundo Quilez; Euillades, Leonardo D.; Euillades, Pablo A.
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Deep Learning algorithms have achieved great progress in different applications due to their training capabilities, parameter reduction and increased accuracy. Image processing is a particular area that has received recent attention promoted by the growing processing power and data availability. Remote sensing devices provide image-like data that can be used to characterize Earth’s natural or artificial phenomena. Particularly, forest detection is important in many applications like flooding simulations, analysis of forest health or detection of area desertification. The existing techniques for forest detection based on satellite data lack accuracy or still require human expert intervention to correct recognition errors or parameter setup. In this work a Deep Learning architecture for forest detection is presented, that aims at increasing accuracy and reducing expert dependency. A data preprocessing procedure, analysis and dataset composition for robust automatic forest detection is described. The proposed approach was validated with real SRTM and Landsat-8 satellite data.
XX Workshop Agentes y Sistemas Inteligentes.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Remote sensing
Forest detection
Deep learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/90894
Ver los metadatos del registro completo
id |
SEDICI_6960d87d047f07c17c39ec83d20967a0 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/90894 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Deep Learning Architecture for Forest Detection in Satellite DataCaffaratti, Gabriel D.Marchetta, Martín G.Forradellas Martinez, Raymundo QuilezEuillades, Leonardo D.Euillades, Pablo A.Ciencias InformáticasRemote sensingForest detectionDeep learningDeep Learning algorithms have achieved great progress in different applications due to their training capabilities, parameter reduction and increased accuracy. Image processing is a particular area that has received recent attention promoted by the growing processing power and data availability. Remote sensing devices provide image-like data that can be used to characterize Earth’s natural or artificial phenomena. Particularly, forest detection is important in many applications like flooding simulations, analysis of forest health or detection of area desertification. The existing techniques for forest detection based on satellite data lack accuracy or still require human expert intervention to correct recognition errors or parameter setup. In this work a Deep Learning architecture for forest detection is presented, that aims at increasing accuracy and reducing expert dependency. A data preprocessing procedure, analysis and dataset composition for robust automatic forest detection is described. The proposed approach was validated with real SRTM and Landsat-8 satellite data.XX Workshop Agentes y Sistemas Inteligentes.Red de Universidades con Carreras en Informática2019-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf64-73http://sedici.unlp.edu.ar/handle/10915/90894enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1info:eu-repo/semantics/reference/hdl/10915/90359info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:21:41Zoai:sedici.unlp.edu.ar:10915/90894Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:21:41.801SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Deep Learning Architecture for Forest Detection in Satellite Data |
title |
Deep Learning Architecture for Forest Detection in Satellite Data |
spellingShingle |
Deep Learning Architecture for Forest Detection in Satellite Data Caffaratti, Gabriel D. Ciencias Informáticas Remote sensing Forest detection Deep learning |
title_short |
Deep Learning Architecture for Forest Detection in Satellite Data |
title_full |
Deep Learning Architecture for Forest Detection in Satellite Data |
title_fullStr |
Deep Learning Architecture for Forest Detection in Satellite Data |
title_full_unstemmed |
Deep Learning Architecture for Forest Detection in Satellite Data |
title_sort |
Deep Learning Architecture for Forest Detection in Satellite Data |
dc.creator.none.fl_str_mv |
Caffaratti, Gabriel D. Marchetta, Martín G. Forradellas Martinez, Raymundo Quilez Euillades, Leonardo D. Euillades, Pablo A. |
author |
Caffaratti, Gabriel D. |
author_facet |
Caffaratti, Gabriel D. Marchetta, Martín G. Forradellas Martinez, Raymundo Quilez Euillades, Leonardo D. Euillades, Pablo A. |
author_role |
author |
author2 |
Marchetta, Martín G. Forradellas Martinez, Raymundo Quilez Euillades, Leonardo D. Euillades, Pablo A. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Remote sensing Forest detection Deep learning |
topic |
Ciencias Informáticas Remote sensing Forest detection Deep learning |
dc.description.none.fl_txt_mv |
Deep Learning algorithms have achieved great progress in different applications due to their training capabilities, parameter reduction and increased accuracy. Image processing is a particular area that has received recent attention promoted by the growing processing power and data availability. Remote sensing devices provide image-like data that can be used to characterize Earth’s natural or artificial phenomena. Particularly, forest detection is important in many applications like flooding simulations, analysis of forest health or detection of area desertification. The existing techniques for forest detection based on satellite data lack accuracy or still require human expert intervention to correct recognition errors or parameter setup. In this work a Deep Learning architecture for forest detection is presented, that aims at increasing accuracy and reducing expert dependency. A data preprocessing procedure, analysis and dataset composition for robust automatic forest detection is described. The proposed approach was validated with real SRTM and Landsat-8 satellite data. XX Workshop Agentes y Sistemas Inteligentes. Red de Universidades con Carreras en Informática |
description |
Deep Learning algorithms have achieved great progress in different applications due to their training capabilities, parameter reduction and increased accuracy. Image processing is a particular area that has received recent attention promoted by the growing processing power and data availability. Remote sensing devices provide image-like data that can be used to characterize Earth’s natural or artificial phenomena. Particularly, forest detection is important in many applications like flooding simulations, analysis of forest health or detection of area desertification. The existing techniques for forest detection based on satellite data lack accuracy or still require human expert intervention to correct recognition errors or parameter setup. In this work a Deep Learning architecture for forest detection is presented, that aims at increasing accuracy and reducing expert dependency. A data preprocessing procedure, analysis and dataset composition for robust automatic forest detection is described. The proposed approach was validated with real SRTM and Landsat-8 satellite data. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/90894 |
url |
http://sedici.unlp.edu.ar/handle/10915/90894 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1 info:eu-repo/semantics/reference/hdl/10915/90359 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 64-73 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904227766075392 |
score |
12.993085 |