Deep Learning Architecture for Forest Detection in Satellite Data

Autores
Caffaratti, Gabriel D.; Marchetta, Martín G.; Forradellas Martinez, Raymundo Quilez; Euillades, Leonardo D.; Euillades, Pablo A.
Año de publicación
2019
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Deep Learning algorithms have achieved great progress in different applications due to their training capabilities, parameter reduction and increased accuracy. Image processing is a particular area that has received recent attention promoted by the growing processing power and data availability. Remote sensing devices provide image-like data that can be used to characterize Earth’s natural or artificial phenomena. Particularly, forest detection is important in many applications like flooding simulations, analysis of forest health or detection of area desertification. The existing techniques for forest detection based on satellite data lack accuracy or still require human expert intervention to correct recognition errors or parameter setup. In this work a Deep Learning architecture for forest detection is presented, that aims at increasing accuracy and reducing expert dependency. A data preprocessing procedure, analysis and dataset composition for robust automatic forest detection is described. The proposed approach was validated with real SRTM and Landsat-8 satellite data.
XX Workshop Agentes y Sistemas Inteligentes.
Red de Universidades con Carreras en Informática
Materia
Ciencias Informáticas
Remote sensing
Forest detection
Deep learning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/90894

id SEDICI_6960d87d047f07c17c39ec83d20967a0
oai_identifier_str oai:sedici.unlp.edu.ar:10915/90894
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Deep Learning Architecture for Forest Detection in Satellite DataCaffaratti, Gabriel D.Marchetta, Martín G.Forradellas Martinez, Raymundo QuilezEuillades, Leonardo D.Euillades, Pablo A.Ciencias InformáticasRemote sensingForest detectionDeep learningDeep Learning algorithms have achieved great progress in different applications due to their training capabilities, parameter reduction and increased accuracy. Image processing is a particular area that has received recent attention promoted by the growing processing power and data availability. Remote sensing devices provide image-like data that can be used to characterize Earth’s natural or artificial phenomena. Particularly, forest detection is important in many applications like flooding simulations, analysis of forest health or detection of area desertification. The existing techniques for forest detection based on satellite data lack accuracy or still require human expert intervention to correct recognition errors or parameter setup. In this work a Deep Learning architecture for forest detection is presented, that aims at increasing accuracy and reducing expert dependency. A data preprocessing procedure, analysis and dataset composition for robust automatic forest detection is described. The proposed approach was validated with real SRTM and Landsat-8 satellite data.XX Workshop Agentes y Sistemas Inteligentes.Red de Universidades con Carreras en Informática2019-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf64-73http://sedici.unlp.edu.ar/handle/10915/90894enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1info:eu-repo/semantics/reference/hdl/10915/90359info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:21:41Zoai:sedici.unlp.edu.ar:10915/90894Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:21:41.801SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Deep Learning Architecture for Forest Detection in Satellite Data
title Deep Learning Architecture for Forest Detection in Satellite Data
spellingShingle Deep Learning Architecture for Forest Detection in Satellite Data
Caffaratti, Gabriel D.
Ciencias Informáticas
Remote sensing
Forest detection
Deep learning
title_short Deep Learning Architecture for Forest Detection in Satellite Data
title_full Deep Learning Architecture for Forest Detection in Satellite Data
title_fullStr Deep Learning Architecture for Forest Detection in Satellite Data
title_full_unstemmed Deep Learning Architecture for Forest Detection in Satellite Data
title_sort Deep Learning Architecture for Forest Detection in Satellite Data
dc.creator.none.fl_str_mv Caffaratti, Gabriel D.
Marchetta, Martín G.
Forradellas Martinez, Raymundo Quilez
Euillades, Leonardo D.
Euillades, Pablo A.
author Caffaratti, Gabriel D.
author_facet Caffaratti, Gabriel D.
Marchetta, Martín G.
Forradellas Martinez, Raymundo Quilez
Euillades, Leonardo D.
Euillades, Pablo A.
author_role author
author2 Marchetta, Martín G.
Forradellas Martinez, Raymundo Quilez
Euillades, Leonardo D.
Euillades, Pablo A.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Remote sensing
Forest detection
Deep learning
topic Ciencias Informáticas
Remote sensing
Forest detection
Deep learning
dc.description.none.fl_txt_mv Deep Learning algorithms have achieved great progress in different applications due to their training capabilities, parameter reduction and increased accuracy. Image processing is a particular area that has received recent attention promoted by the growing processing power and data availability. Remote sensing devices provide image-like data that can be used to characterize Earth’s natural or artificial phenomena. Particularly, forest detection is important in many applications like flooding simulations, analysis of forest health or detection of area desertification. The existing techniques for forest detection based on satellite data lack accuracy or still require human expert intervention to correct recognition errors or parameter setup. In this work a Deep Learning architecture for forest detection is presented, that aims at increasing accuracy and reducing expert dependency. A data preprocessing procedure, analysis and dataset composition for robust automatic forest detection is described. The proposed approach was validated with real SRTM and Landsat-8 satellite data.
XX Workshop Agentes y Sistemas Inteligentes.
Red de Universidades con Carreras en Informática
description Deep Learning algorithms have achieved great progress in different applications due to their training capabilities, parameter reduction and increased accuracy. Image processing is a particular area that has received recent attention promoted by the growing processing power and data availability. Remote sensing devices provide image-like data that can be used to characterize Earth’s natural or artificial phenomena. Particularly, forest detection is important in many applications like flooding simulations, analysis of forest health or detection of area desertification. The existing techniques for forest detection based on satellite data lack accuracy or still require human expert intervention to correct recognition errors or parameter setup. In this work a Deep Learning architecture for forest detection is presented, that aims at increasing accuracy and reducing expert dependency. A data preprocessing procedure, analysis and dataset composition for robust automatic forest detection is described. The proposed approach was validated with real SRTM and Landsat-8 satellite data.
publishDate 2019
dc.date.none.fl_str_mv 2019-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/90894
url http://sedici.unlp.edu.ar/handle/10915/90894
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1
info:eu-repo/semantics/reference/hdl/10915/90359
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
64-73
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842904227766075392
score 12.993085