Smith-Waterman algorithm on heterogeneous systems: A case study
- Autores
- Rucci, Enzo; De Giusti, Armando Eduardo; Naiouf, Marcelo; García Sánchez, Carlos; Botella, Juan Guillermo; Prieto-Matías, Manuel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The well-known Smith-Waterman (SW) algorithm is a high-sensitivity method for local alignments. However, SW is expensive in terms of both execution time and memory usage, which makes it impractical in many applications. Some heuristics are possible but at the expense of losing sensitivity. Fortunately, previous research have shown that new computing platforms such as GPUs and FPGAs are able to accelerate SW and achieve impressive speedups. In this paper we have explored SW acceleration on a heterogeneous platform equipped with an Intel Xeon Phi coprocessor. Our evaluation, using the well-known Swiss-Prot database as a benchmark, has shown that a hybrid CPU-Phi heterogeneous system is able to achieve competitive performance (62.6 GCUPS), even with moderate low-level optimisations.
Facultad de Informática - Materia
-
Ciencias Informáticas
Bioinformatics
Smith-Waterman
HPC
Intel Xeon Phi
Heterogeneous computing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/82886
Ver los metadatos del registro completo
id |
SEDICI_687697007f94f8e74c6ac1f1a950b077 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/82886 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Smith-Waterman algorithm on heterogeneous systems: A case studyRucci, EnzoDe Giusti, Armando EduardoNaiouf, MarceloGarcía Sánchez, CarlosBotella, Juan GuillermoPrieto-Matías, ManuelCiencias InformáticasBioinformaticsSmith-WatermanHPCIntel Xeon PhiHeterogeneous computingThe well-known Smith-Waterman (SW) algorithm is a high-sensitivity method for local alignments. However, SW is expensive in terms of both execution time and memory usage, which makes it impractical in many applications. Some heuristics are possible but at the expense of losing sensitivity. Fortunately, previous research have shown that new computing platforms such as GPUs and FPGAs are able to accelerate SW and achieve impressive speedups. In this paper we have explored SW acceleration on a heterogeneous platform equipped with an Intel Xeon Phi coprocessor. Our evaluation, using the well-known Swiss-Prot database as a benchmark, has shown that a hybrid CPU-Phi heterogeneous system is able to achieve competitive performance (62.6 GCUPS), even with moderate low-level optimisations.Facultad de Informática2014-09-25info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/82886enginfo:eu-repo/semantics/altIdentifier/isbn/978-1-4799-5548-0info:eu-repo/semantics/altIdentifier/doi/10.1109/CLUSTER.2014.6968784info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:15:36Zoai:sedici.unlp.edu.ar:10915/82886Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:15:37.192SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Smith-Waterman algorithm on heterogeneous systems: A case study |
title |
Smith-Waterman algorithm on heterogeneous systems: A case study |
spellingShingle |
Smith-Waterman algorithm on heterogeneous systems: A case study Rucci, Enzo Ciencias Informáticas Bioinformatics Smith-Waterman HPC Intel Xeon Phi Heterogeneous computing |
title_short |
Smith-Waterman algorithm on heterogeneous systems: A case study |
title_full |
Smith-Waterman algorithm on heterogeneous systems: A case study |
title_fullStr |
Smith-Waterman algorithm on heterogeneous systems: A case study |
title_full_unstemmed |
Smith-Waterman algorithm on heterogeneous systems: A case study |
title_sort |
Smith-Waterman algorithm on heterogeneous systems: A case study |
dc.creator.none.fl_str_mv |
Rucci, Enzo De Giusti, Armando Eduardo Naiouf, Marcelo García Sánchez, Carlos Botella, Juan Guillermo Prieto-Matías, Manuel |
author |
Rucci, Enzo |
author_facet |
Rucci, Enzo De Giusti, Armando Eduardo Naiouf, Marcelo García Sánchez, Carlos Botella, Juan Guillermo Prieto-Matías, Manuel |
author_role |
author |
author2 |
De Giusti, Armando Eduardo Naiouf, Marcelo García Sánchez, Carlos Botella, Juan Guillermo Prieto-Matías, Manuel |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Bioinformatics Smith-Waterman HPC Intel Xeon Phi Heterogeneous computing |
topic |
Ciencias Informáticas Bioinformatics Smith-Waterman HPC Intel Xeon Phi Heterogeneous computing |
dc.description.none.fl_txt_mv |
The well-known Smith-Waterman (SW) algorithm is a high-sensitivity method for local alignments. However, SW is expensive in terms of both execution time and memory usage, which makes it impractical in many applications. Some heuristics are possible but at the expense of losing sensitivity. Fortunately, previous research have shown that new computing platforms such as GPUs and FPGAs are able to accelerate SW and achieve impressive speedups. In this paper we have explored SW acceleration on a heterogeneous platform equipped with an Intel Xeon Phi coprocessor. Our evaluation, using the well-known Swiss-Prot database as a benchmark, has shown that a hybrid CPU-Phi heterogeneous system is able to achieve competitive performance (62.6 GCUPS), even with moderate low-level optimisations. Facultad de Informática |
description |
The well-known Smith-Waterman (SW) algorithm is a high-sensitivity method for local alignments. However, SW is expensive in terms of both execution time and memory usage, which makes it impractical in many applications. Some heuristics are possible but at the expense of losing sensitivity. Fortunately, previous research have shown that new computing platforms such as GPUs and FPGAs are able to accelerate SW and achieve impressive speedups. In this paper we have explored SW acceleration on a heterogeneous platform equipped with an Intel Xeon Phi coprocessor. Our evaluation, using the well-known Swiss-Prot database as a benchmark, has shown that a hybrid CPU-Phi heterogeneous system is able to achieve competitive performance (62.6 GCUPS), even with moderate low-level optimisations. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09-25 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/82886 |
url |
http://sedici.unlp.edu.ar/handle/10915/82886 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-1-4799-5548-0 info:eu-repo/semantics/altIdentifier/doi/10.1109/CLUSTER.2014.6968784 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616028340879360 |
score |
13.070432 |