An energy-aware performance analysis of SWIMM: Smith-Waterman implementation on Intel's Multicore and Manycore architectures
- Autores
- Rucci, Enzo; García, Carlos; Botella, Guillermo; de Giusti, Armando Eduardo; Naiouf, Ricardo Marcelo; Prieto Matías, Manuel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Summary Alignment is essential in many areas such as biological, chemical and criminal forensics. The well-known Smith-Waterman (SW) algorithm is able to retrieve the optimal local alignment with quadratic time and space complexity. There are several implementations that take advantage of computing parallelization, such as manycores, FPGAS or GPUS, in order to reduce the alignment effort. In this research, we adapt, develop and tune the SW algorithm named SWIMM on a heterogeneous platform based on Intel's Xeon and Xeon Phi coprocessor. SWIMM is a free tool available in a public git repository https://github.com/enzorucci/SWIMM. We efficiently exploit data and thread-level parallelism, reaching up to 380 GCUPS on heterogeneous architecture, 350 GCUPS for the isolated Xeon and 50 GCUPS on Xeon Phi. Despite the heterogeneous implementation obtaining the best performance, it is also the most energy-demanding. In fact, we also present a trade-off analysis between performance and power consumption. The greenest configuration is based on an isolated multicore system that exploits AVX2 instruction set architecture reaching 1.5 GCUPS/Watts.
Fil: Rucci, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina
Fil: García, Carlos. Universidad Complutense de Madrid; España
Fil: Botella, Guillermo. Universidad Complutense de Madrid; España
Fil: de Giusti, Armando Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina
Fil: Naiouf, Ricardo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina
Fil: Prieto Matías, Manuel. Universidad Complutense de Madrid; España - Materia
-
Bioinformatics
Heterogeneous Computing
Hpc
Intel Xeon Phi
Power Consumption
Smith-Waterman - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/53930
Ver los metadatos del registro completo
id |
CONICETDig_d7e3fb8639361710001d5f3791e9678c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/53930 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An energy-aware performance analysis of SWIMM: Smith-Waterman implementation on Intel's Multicore and Manycore architecturesRucci, EnzoGarcía, CarlosBotella, Guillermode Giusti, Armando EduardoNaiouf, Ricardo MarceloPrieto Matías, ManuelBioinformaticsHeterogeneous ComputingHpcIntel Xeon PhiPower ConsumptionSmith-Watermanhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Summary Alignment is essential in many areas such as biological, chemical and criminal forensics. The well-known Smith-Waterman (SW) algorithm is able to retrieve the optimal local alignment with quadratic time and space complexity. There are several implementations that take advantage of computing parallelization, such as manycores, FPGAS or GPUS, in order to reduce the alignment effort. In this research, we adapt, develop and tune the SW algorithm named SWIMM on a heterogeneous platform based on Intel's Xeon and Xeon Phi coprocessor. SWIMM is a free tool available in a public git repository https://github.com/enzorucci/SWIMM. We efficiently exploit data and thread-level parallelism, reaching up to 380 GCUPS on heterogeneous architecture, 350 GCUPS for the isolated Xeon and 50 GCUPS on Xeon Phi. Despite the heterogeneous implementation obtaining the best performance, it is also the most energy-demanding. In fact, we also present a trade-off analysis between performance and power consumption. The greenest configuration is based on an isolated multicore system that exploits AVX2 instruction set architecture reaching 1.5 GCUPS/Watts.Fil: Rucci, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; ArgentinaFil: García, Carlos. Universidad Complutense de Madrid; EspañaFil: Botella, Guillermo. Universidad Complutense de Madrid; EspañaFil: de Giusti, Armando Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; ArgentinaFil: Naiouf, Ricardo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; ArgentinaFil: Prieto Matías, Manuel. Universidad Complutense de Madrid; EspañaJohn Wiley & Sons Ltd2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53930Rucci, Enzo; García, Carlos; Botella, Guillermo; de Giusti, Armando Eduardo; Naiouf, Ricardo Marcelo; et al.; An energy-aware performance analysis of SWIMM: Smith-Waterman implementation on Intel's Multicore and Manycore architectures; John Wiley & Sons Ltd; Concurrency and Computation: Practice and Experience; 27; 18; 12-2015; 5517-55371532-0626CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/cpe.3598info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3598info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:19Zoai:ri.conicet.gov.ar:11336/53930instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:19.957CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An energy-aware performance analysis of SWIMM: Smith-Waterman implementation on Intel's Multicore and Manycore architectures |
title |
An energy-aware performance analysis of SWIMM: Smith-Waterman implementation on Intel's Multicore and Manycore architectures |
spellingShingle |
An energy-aware performance analysis of SWIMM: Smith-Waterman implementation on Intel's Multicore and Manycore architectures Rucci, Enzo Bioinformatics Heterogeneous Computing Hpc Intel Xeon Phi Power Consumption Smith-Waterman |
title_short |
An energy-aware performance analysis of SWIMM: Smith-Waterman implementation on Intel's Multicore and Manycore architectures |
title_full |
An energy-aware performance analysis of SWIMM: Smith-Waterman implementation on Intel's Multicore and Manycore architectures |
title_fullStr |
An energy-aware performance analysis of SWIMM: Smith-Waterman implementation on Intel's Multicore and Manycore architectures |
title_full_unstemmed |
An energy-aware performance analysis of SWIMM: Smith-Waterman implementation on Intel's Multicore and Manycore architectures |
title_sort |
An energy-aware performance analysis of SWIMM: Smith-Waterman implementation on Intel's Multicore and Manycore architectures |
dc.creator.none.fl_str_mv |
Rucci, Enzo García, Carlos Botella, Guillermo de Giusti, Armando Eduardo Naiouf, Ricardo Marcelo Prieto Matías, Manuel |
author |
Rucci, Enzo |
author_facet |
Rucci, Enzo García, Carlos Botella, Guillermo de Giusti, Armando Eduardo Naiouf, Ricardo Marcelo Prieto Matías, Manuel |
author_role |
author |
author2 |
García, Carlos Botella, Guillermo de Giusti, Armando Eduardo Naiouf, Ricardo Marcelo Prieto Matías, Manuel |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Bioinformatics Heterogeneous Computing Hpc Intel Xeon Phi Power Consumption Smith-Waterman |
topic |
Bioinformatics Heterogeneous Computing Hpc Intel Xeon Phi Power Consumption Smith-Waterman |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Summary Alignment is essential in many areas such as biological, chemical and criminal forensics. The well-known Smith-Waterman (SW) algorithm is able to retrieve the optimal local alignment with quadratic time and space complexity. There are several implementations that take advantage of computing parallelization, such as manycores, FPGAS or GPUS, in order to reduce the alignment effort. In this research, we adapt, develop and tune the SW algorithm named SWIMM on a heterogeneous platform based on Intel's Xeon and Xeon Phi coprocessor. SWIMM is a free tool available in a public git repository https://github.com/enzorucci/SWIMM. We efficiently exploit data and thread-level parallelism, reaching up to 380 GCUPS on heterogeneous architecture, 350 GCUPS for the isolated Xeon and 50 GCUPS on Xeon Phi. Despite the heterogeneous implementation obtaining the best performance, it is also the most energy-demanding. In fact, we also present a trade-off analysis between performance and power consumption. The greenest configuration is based on an isolated multicore system that exploits AVX2 instruction set architecture reaching 1.5 GCUPS/Watts. Fil: Rucci, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina Fil: García, Carlos. Universidad Complutense de Madrid; España Fil: Botella, Guillermo. Universidad Complutense de Madrid; España Fil: de Giusti, Armando Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina Fil: Naiouf, Ricardo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina Fil: Prieto Matías, Manuel. Universidad Complutense de Madrid; España |
description |
Summary Alignment is essential in many areas such as biological, chemical and criminal forensics. The well-known Smith-Waterman (SW) algorithm is able to retrieve the optimal local alignment with quadratic time and space complexity. There are several implementations that take advantage of computing parallelization, such as manycores, FPGAS or GPUS, in order to reduce the alignment effort. In this research, we adapt, develop and tune the SW algorithm named SWIMM on a heterogeneous platform based on Intel's Xeon and Xeon Phi coprocessor. SWIMM is a free tool available in a public git repository https://github.com/enzorucci/SWIMM. We efficiently exploit data and thread-level parallelism, reaching up to 380 GCUPS on heterogeneous architecture, 350 GCUPS for the isolated Xeon and 50 GCUPS on Xeon Phi. Despite the heterogeneous implementation obtaining the best performance, it is also the most energy-demanding. In fact, we also present a trade-off analysis between performance and power consumption. The greenest configuration is based on an isolated multicore system that exploits AVX2 instruction set architecture reaching 1.5 GCUPS/Watts. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/53930 Rucci, Enzo; García, Carlos; Botella, Guillermo; de Giusti, Armando Eduardo; Naiouf, Ricardo Marcelo; et al.; An energy-aware performance analysis of SWIMM: Smith-Waterman implementation on Intel's Multicore and Manycore architectures; John Wiley & Sons Ltd; Concurrency and Computation: Practice and Experience; 27; 18; 12-2015; 5517-5537 1532-0626 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/53930 |
identifier_str_mv |
Rucci, Enzo; García, Carlos; Botella, Guillermo; de Giusti, Armando Eduardo; Naiouf, Ricardo Marcelo; et al.; An energy-aware performance analysis of SWIMM: Smith-Waterman implementation on Intel's Multicore and Manycore architectures; John Wiley & Sons Ltd; Concurrency and Computation: Practice and Experience; 27; 18; 12-2015; 5517-5537 1532-0626 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/cpe.3598 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3598 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614264381243392 |
score |
13.070432 |