SWIFOLD: Smith-Waterman Implementation on FPGA with OpenCL for long DNA sequences
- Autores
- Rucci, Enzo; García Sanchez, Carlos; Botella, Guillermo Juan; de Giusti, Armando Eduardo; Naiouf, Ricardo Marcelo; Prieto Matías, Manuel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: The Smith-Waterman (SW) algorithm is the best choice for searching similar regions between two DNA or protein sequences. However, it may become impracticable in some contexts due to its high computational demands. Consequently, the computer science community has focused on the use of modern parallel architectures such as graphics processing units (GPUs), Xeon Phi accelerators and field programmable gate arrays (FPGAs) to speed up large-scale workloads. Results: This paper presents and evaluates SWIFOLD: a Smith-Waterman parallel Implementation on FPGA with OpenCL for Long DNA sequences. First, we evaluate its performance and resource usage for different kernel configurations. Next, we carry out a performance comparison between our tool and other state-of-the-art implementations considering three different datasets. SWIFOLD offers the best average performance for small and medium test sets, achieving a performance that is independent of input size and sequence similarity. In addition, SWIFOLD provides competitive performance rates in comparison with GPU-based implementations on the latest GPU generation for the large dataset. Conclusions: The results suggest that SWIFOLD can be a serious contender for accelerating the SW alignment of DNA sequences of unrestricted size in an affordable way reaching on average 125 GCUPS and almost a peak of 270 GCUPS.
Fil: Rucci, Enzo. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: García Sanchez, Carlos. Universidad Complutense de Madrid; España
Fil: Botella, Guillermo Juan. Universidad Complutense de Madrid; España
Fil: de Giusti, Armando Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina
Fil: Naiouf, Ricardo Marcelo. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina
Fil: Prieto Matías, Manuel. Universidad Complutense de Madrid; España - Materia
-
DNA
Smith-Waterman
OpenCL
HPC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100986
Ver los metadatos del registro completo
id |
CONICETDig_d5a846e514a9c98de04618a6f5fe5833 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100986 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
SWIFOLD: Smith-Waterman Implementation on FPGA with OpenCL for long DNA sequencesRucci, EnzoGarcía Sanchez, CarlosBotella, Guillermo Juande Giusti, Armando EduardoNaiouf, Ricardo MarceloPrieto Matías, ManuelDNASmith-WatermanOpenCLHPChttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Background: The Smith-Waterman (SW) algorithm is the best choice for searching similar regions between two DNA or protein sequences. However, it may become impracticable in some contexts due to its high computational demands. Consequently, the computer science community has focused on the use of modern parallel architectures such as graphics processing units (GPUs), Xeon Phi accelerators and field programmable gate arrays (FPGAs) to speed up large-scale workloads. Results: This paper presents and evaluates SWIFOLD: a Smith-Waterman parallel Implementation on FPGA with OpenCL for Long DNA sequences. First, we evaluate its performance and resource usage for different kernel configurations. Next, we carry out a performance comparison between our tool and other state-of-the-art implementations considering three different datasets. SWIFOLD offers the best average performance for small and medium test sets, achieving a performance that is independent of input size and sequence similarity. In addition, SWIFOLD provides competitive performance rates in comparison with GPU-based implementations on the latest GPU generation for the large dataset. Conclusions: The results suggest that SWIFOLD can be a serious contender for accelerating the SW alignment of DNA sequences of unrestricted size in an affordable way reaching on average 125 GCUPS and almost a peak of 270 GCUPS.Fil: Rucci, Enzo. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: García Sanchez, Carlos. Universidad Complutense de Madrid; EspañaFil: Botella, Guillermo Juan. Universidad Complutense de Madrid; EspañaFil: de Giusti, Armando Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; ArgentinaFil: Naiouf, Ricardo Marcelo. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; ArgentinaFil: Prieto Matías, Manuel. Universidad Complutense de Madrid; EspañaBioMed Central2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/100986Rucci, Enzo; García Sanchez, Carlos; Botella, Guillermo Juan; de Giusti, Armando Eduardo; Naiouf, Ricardo Marcelo; et al.; SWIFOLD: Smith-Waterman Implementation on FPGA with OpenCL for long DNA sequences; BioMed Central; Bmc Systems Biology; 12; 96; 2-2018; 43-531752-0509CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1186%2Fs12918-018-0614-6info:eu-repo/semantics/altIdentifier/doi/10.1186/s12918-018-0614-6info:eu-repo/semantics/altIdentifier/url/https://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-018-0614-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:20Zoai:ri.conicet.gov.ar:11336/100986instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:20.655CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
SWIFOLD: Smith-Waterman Implementation on FPGA with OpenCL for long DNA sequences |
title |
SWIFOLD: Smith-Waterman Implementation on FPGA with OpenCL for long DNA sequences |
spellingShingle |
SWIFOLD: Smith-Waterman Implementation on FPGA with OpenCL for long DNA sequences Rucci, Enzo DNA Smith-Waterman OpenCL HPC |
title_short |
SWIFOLD: Smith-Waterman Implementation on FPGA with OpenCL for long DNA sequences |
title_full |
SWIFOLD: Smith-Waterman Implementation on FPGA with OpenCL for long DNA sequences |
title_fullStr |
SWIFOLD: Smith-Waterman Implementation on FPGA with OpenCL for long DNA sequences |
title_full_unstemmed |
SWIFOLD: Smith-Waterman Implementation on FPGA with OpenCL for long DNA sequences |
title_sort |
SWIFOLD: Smith-Waterman Implementation on FPGA with OpenCL for long DNA sequences |
dc.creator.none.fl_str_mv |
Rucci, Enzo García Sanchez, Carlos Botella, Guillermo Juan de Giusti, Armando Eduardo Naiouf, Ricardo Marcelo Prieto Matías, Manuel |
author |
Rucci, Enzo |
author_facet |
Rucci, Enzo García Sanchez, Carlos Botella, Guillermo Juan de Giusti, Armando Eduardo Naiouf, Ricardo Marcelo Prieto Matías, Manuel |
author_role |
author |
author2 |
García Sanchez, Carlos Botella, Guillermo Juan de Giusti, Armando Eduardo Naiouf, Ricardo Marcelo Prieto Matías, Manuel |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
DNA Smith-Waterman OpenCL HPC |
topic |
DNA Smith-Waterman OpenCL HPC |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background: The Smith-Waterman (SW) algorithm is the best choice for searching similar regions between two DNA or protein sequences. However, it may become impracticable in some contexts due to its high computational demands. Consequently, the computer science community has focused on the use of modern parallel architectures such as graphics processing units (GPUs), Xeon Phi accelerators and field programmable gate arrays (FPGAs) to speed up large-scale workloads. Results: This paper presents and evaluates SWIFOLD: a Smith-Waterman parallel Implementation on FPGA with OpenCL for Long DNA sequences. First, we evaluate its performance and resource usage for different kernel configurations. Next, we carry out a performance comparison between our tool and other state-of-the-art implementations considering three different datasets. SWIFOLD offers the best average performance for small and medium test sets, achieving a performance that is independent of input size and sequence similarity. In addition, SWIFOLD provides competitive performance rates in comparison with GPU-based implementations on the latest GPU generation for the large dataset. Conclusions: The results suggest that SWIFOLD can be a serious contender for accelerating the SW alignment of DNA sequences of unrestricted size in an affordable way reaching on average 125 GCUPS and almost a peak of 270 GCUPS. Fil: Rucci, Enzo. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: García Sanchez, Carlos. Universidad Complutense de Madrid; España Fil: Botella, Guillermo Juan. Universidad Complutense de Madrid; España Fil: de Giusti, Armando Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina Fil: Naiouf, Ricardo Marcelo. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina Fil: Prieto Matías, Manuel. Universidad Complutense de Madrid; España |
description |
Background: The Smith-Waterman (SW) algorithm is the best choice for searching similar regions between two DNA or protein sequences. However, it may become impracticable in some contexts due to its high computational demands. Consequently, the computer science community has focused on the use of modern parallel architectures such as graphics processing units (GPUs), Xeon Phi accelerators and field programmable gate arrays (FPGAs) to speed up large-scale workloads. Results: This paper presents and evaluates SWIFOLD: a Smith-Waterman parallel Implementation on FPGA with OpenCL for Long DNA sequences. First, we evaluate its performance and resource usage for different kernel configurations. Next, we carry out a performance comparison between our tool and other state-of-the-art implementations considering three different datasets. SWIFOLD offers the best average performance for small and medium test sets, achieving a performance that is independent of input size and sequence similarity. In addition, SWIFOLD provides competitive performance rates in comparison with GPU-based implementations on the latest GPU generation for the large dataset. Conclusions: The results suggest that SWIFOLD can be a serious contender for accelerating the SW alignment of DNA sequences of unrestricted size in an affordable way reaching on average 125 GCUPS and almost a peak of 270 GCUPS. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100986 Rucci, Enzo; García Sanchez, Carlos; Botella, Guillermo Juan; de Giusti, Armando Eduardo; Naiouf, Ricardo Marcelo; et al.; SWIFOLD: Smith-Waterman Implementation on FPGA with OpenCL for long DNA sequences; BioMed Central; Bmc Systems Biology; 12; 96; 2-2018; 43-53 1752-0509 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100986 |
identifier_str_mv |
Rucci, Enzo; García Sanchez, Carlos; Botella, Guillermo Juan; de Giusti, Armando Eduardo; Naiouf, Ricardo Marcelo; et al.; SWIFOLD: Smith-Waterman Implementation on FPGA with OpenCL for long DNA sequences; BioMed Central; Bmc Systems Biology; 12; 96; 2-2018; 43-53 1752-0509 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1186%2Fs12918-018-0614-6 info:eu-repo/semantics/altIdentifier/doi/10.1186/s12918-018-0614-6 info:eu-repo/semantics/altIdentifier/url/https://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-018-0614-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
BioMed Central |
publisher.none.fl_str_mv |
BioMed Central |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613423160098816 |
score |
13.070432 |