Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants
- Autores
- Fait, María Elisa; Garrote, Graciela Liliana; Clapés, Pere; Tanco, Sebastián; Lorenzo, Julia; Morcelle del Valle, Susana Raquel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Two novel arginine-based cationic surfactants were synthesized using as biocatalyst papain, an endopeptidase from Carica papaya latex, adsorbed onto polyamide. The classical substrate Nα-benzoyl-arginine ethyl ester hydrochloride for the determination of cysteine and serine proteases activity was used as the arginine donor, whereas decyl- and dodecylamine were used as nucleophiles for the condensation reaction. Yields higher than 90 and 80 % were achieved for the synthesis of Nα-benzoyl-arginine decyl amide (Bz-Arg-NHC10) and Nα-benzoyl-arginine dodecyl amide (Bz-Arg-NHC12), respectively. The purification process was developed in order to make it more sustainable, by using water and ethanol as the main separation solvents in a single cationic exchange chromatographic separation step. Bz-Arg-NHC10 and Bz-Arg-NHC12 proved antimicrobial activity against both Gram-positive and Gram-negative bacteria, revealing their potential use as effective disinfectants as they reduced 99 % the initial bacterial population after only 1 h of contact. The cytotoxic effect towards different cell types of both arginine derivatives was also measured. Bz-Arg-NHCn demonstrated lower haemolytic activity and were less eye-irritating than the commercial cationic surfactant cetrimide. A similar trend could also be observed when cytotoxicity was tested on hepatocytes and fibroblast cell lines: both arginine derivatives were less toxic than cetrimide. All these properties would make the two novel arginine compounds a promising alternative to commercial cationic surfactants, especially for their use as additives in topical formulations.
Centro de Investigación de Proteínas Vegetales - Materia
-
Biología
Arginine-based surfactants
Papain
Biocatalysis
Antimicrobial activity
Cytotoxic effect - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/92352
Ver los metadatos del registro completo
id |
SEDICI_66c3d32a8446ee08741c7f9cab735d3a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/92352 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactantsFait, María ElisaGarrote, Graciela LilianaClapés, PereTanco, SebastiánLorenzo, JuliaMorcelle del Valle, Susana RaquelBiologíaArginine-based surfactantsPapainBiocatalysisAntimicrobial activityCytotoxic effectTwo novel arginine-based cationic surfactants were synthesized using as biocatalyst papain, an endopeptidase from Carica papaya latex, adsorbed onto polyamide. The classical substrate Nα-benzoyl-arginine ethyl ester hydrochloride for the determination of cysteine and serine proteases activity was used as the arginine donor, whereas decyl- and dodecylamine were used as nucleophiles for the condensation reaction. Yields higher than 90 and 80 % were achieved for the synthesis of Nα-benzoyl-arginine decyl amide (Bz-Arg-NHC10) and Nα-benzoyl-arginine dodecyl amide (Bz-Arg-NHC12), respectively. The purification process was developed in order to make it more sustainable, by using water and ethanol as the main separation solvents in a single cationic exchange chromatographic separation step. Bz-Arg-NHC10 and Bz-Arg-NHC12 proved antimicrobial activity against both Gram-positive and Gram-negative bacteria, revealing their potential use as effective disinfectants as they reduced 99 % the initial bacterial population after only 1 h of contact. The cytotoxic effect towards different cell types of both arginine derivatives was also measured. Bz-Arg-NHCn demonstrated lower haemolytic activity and were less eye-irritating than the commercial cationic surfactant cetrimide. A similar trend could also be observed when cytotoxicity was tested on hepatocytes and fibroblast cell lines: both arginine derivatives were less toxic than cetrimide. All these properties would make the two novel arginine compounds a promising alternative to commercial cationic surfactants, especially for their use as additives in topical formulations.Centro de Investigación de Proteínas Vegetales2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1465-1477http://sedici.unlp.edu.ar/handle/10915/92352enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00726-015-1979-0info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:19:12Zoai:sedici.unlp.edu.ar:10915/92352Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:19:12.293SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants |
title |
Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants |
spellingShingle |
Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants Fait, María Elisa Biología Arginine-based surfactants Papain Biocatalysis Antimicrobial activity Cytotoxic effect |
title_short |
Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants |
title_full |
Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants |
title_fullStr |
Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants |
title_full_unstemmed |
Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants |
title_sort |
Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants |
dc.creator.none.fl_str_mv |
Fait, María Elisa Garrote, Graciela Liliana Clapés, Pere Tanco, Sebastián Lorenzo, Julia Morcelle del Valle, Susana Raquel |
author |
Fait, María Elisa |
author_facet |
Fait, María Elisa Garrote, Graciela Liliana Clapés, Pere Tanco, Sebastián Lorenzo, Julia Morcelle del Valle, Susana Raquel |
author_role |
author |
author2 |
Garrote, Graciela Liliana Clapés, Pere Tanco, Sebastián Lorenzo, Julia Morcelle del Valle, Susana Raquel |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Biología Arginine-based surfactants Papain Biocatalysis Antimicrobial activity Cytotoxic effect |
topic |
Biología Arginine-based surfactants Papain Biocatalysis Antimicrobial activity Cytotoxic effect |
dc.description.none.fl_txt_mv |
Two novel arginine-based cationic surfactants were synthesized using as biocatalyst papain, an endopeptidase from Carica papaya latex, adsorbed onto polyamide. The classical substrate Nα-benzoyl-arginine ethyl ester hydrochloride for the determination of cysteine and serine proteases activity was used as the arginine donor, whereas decyl- and dodecylamine were used as nucleophiles for the condensation reaction. Yields higher than 90 and 80 % were achieved for the synthesis of Nα-benzoyl-arginine decyl amide (Bz-Arg-NHC10) and Nα-benzoyl-arginine dodecyl amide (Bz-Arg-NHC12), respectively. The purification process was developed in order to make it more sustainable, by using water and ethanol as the main separation solvents in a single cationic exchange chromatographic separation step. Bz-Arg-NHC10 and Bz-Arg-NHC12 proved antimicrobial activity against both Gram-positive and Gram-negative bacteria, revealing their potential use as effective disinfectants as they reduced 99 % the initial bacterial population after only 1 h of contact. The cytotoxic effect towards different cell types of both arginine derivatives was also measured. Bz-Arg-NHCn demonstrated lower haemolytic activity and were less eye-irritating than the commercial cationic surfactant cetrimide. A similar trend could also be observed when cytotoxicity was tested on hepatocytes and fibroblast cell lines: both arginine derivatives were less toxic than cetrimide. All these properties would make the two novel arginine compounds a promising alternative to commercial cationic surfactants, especially for their use as additives in topical formulations. Centro de Investigación de Proteínas Vegetales |
description |
Two novel arginine-based cationic surfactants were synthesized using as biocatalyst papain, an endopeptidase from Carica papaya latex, adsorbed onto polyamide. The classical substrate Nα-benzoyl-arginine ethyl ester hydrochloride for the determination of cysteine and serine proteases activity was used as the arginine donor, whereas decyl- and dodecylamine were used as nucleophiles for the condensation reaction. Yields higher than 90 and 80 % were achieved for the synthesis of Nα-benzoyl-arginine decyl amide (Bz-Arg-NHC10) and Nα-benzoyl-arginine dodecyl amide (Bz-Arg-NHC12), respectively. The purification process was developed in order to make it more sustainable, by using water and ethanol as the main separation solvents in a single cationic exchange chromatographic separation step. Bz-Arg-NHC10 and Bz-Arg-NHC12 proved antimicrobial activity against both Gram-positive and Gram-negative bacteria, revealing their potential use as effective disinfectants as they reduced 99 % the initial bacterial population after only 1 h of contact. The cytotoxic effect towards different cell types of both arginine derivatives was also measured. Bz-Arg-NHCn demonstrated lower haemolytic activity and were less eye-irritating than the commercial cationic surfactant cetrimide. A similar trend could also be observed when cytotoxicity was tested on hepatocytes and fibroblast cell lines: both arginine derivatives were less toxic than cetrimide. All these properties would make the two novel arginine compounds a promising alternative to commercial cationic surfactants, especially for their use as additives in topical formulations. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/92352 |
url |
http://sedici.unlp.edu.ar/handle/10915/92352 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00726-015-1979-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1465-1477 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616065542258688 |
score |
13.070432 |