Antifungal Activity of Arginine-Based Surfactants
- Autores
- Fait, María Elisa; S. da Costa, Helen P.; Freitas, Cleverson D. T.; Bakás, Laura Susana; Morcelle del Valle, Susana Raquel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Amino acid based surfactants constitute an important class of surface active biomolecules showing remarkable biocompatible properties. Antimicrobial activity is one of the most remarkable biological properties of this kind of surfactants, which have been widely studied against a broad spectrum of microorganisms. However, the antifungal activity of this kind of compound has been less well investigated. The aim of this work is the study of the antifungal activity of two novel argininebased surfactants (N -benzoyl-arginine decylamide, Bz-Arg-NHC10 and N -benzoyl-arginine dodecylamide, Bz-Arg-NHC12), obtained by an enzymatic strategy, against phytopathogenic filamentous fungi and dermatophyte strains. Methods: Four phytopathogenic fungi (Fusarium oxysporum, Fusarium solani, Colletotrichum gloeosporioides and Colletotrichum lindemuthianum) and two human pathogenic fungi (dermatophytes Trichophyton rubrum and Trichophyton mentagrophytes) were tested. Inhibition of vegetative growth and conidia germination was investigated for the phytopathogenic fungi. In order to elucidate the possible mechanism of biocide action, membrane integrity, as well as the production of reactive oxygen species (ROS) were evaluated. Additionally, the inhibition of germination of dermatophyte microconidia due to both arginine-based surfactants was studied. Minimum inhibitory concentration, as well as the concentration that inhibits 50% of germination were determined for both compounds and both fungal strains. Results: For the vegetative growth of phytopathogenic fungi, the most potent arginine-based compound was Bz-Arg-NHC10. All the tested compounds interfered with the conidia development of the studied species. Investigation of the possible mechanism of toxicity towards phytopathogenic fungi indicated direct damage of the plasma membrane and production of ROS. For the two strains of dermatophyte fungi tested, all the proved compounds showed similar fungistatic efficacy. Conclusion: Bz-Arg-NHC10 and Bz-Arg-NHC12 were demonstrated to have broad biocidal ability against the proliferative vegetative form and the asexual reproductive conidia. Results suggest that both membrane permeabilization and induction of oxidative stress are part of the antifungal mechanisms involved in the interruption of normal conidia development by Bz-Arg-NHCn, leading to cell death.
Centro de Investigación de Proteínas Vegetales - Materia
-
Biología
Arginine-based surfactants
Antifungal activity
Phytopathogenic fungi
Dermatophytes
Membrane damage
ROS production - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/92364
Ver los metadatos del registro completo
id |
SEDICI_d4977b2c78e9ae00e8acd068ed6f6c9a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/92364 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Antifungal Activity of Arginine-Based SurfactantsFait, María ElisaS. da Costa, Helen P.Freitas, Cleverson D. T.Bakás, Laura SusanaMorcelle del Valle, Susana RaquelBiologíaArginine-based surfactantsAntifungal activityPhytopathogenic fungiDermatophytesMembrane damageROS productionBackground: Amino acid based surfactants constitute an important class of surface active biomolecules showing remarkable biocompatible properties. Antimicrobial activity is one of the most remarkable biological properties of this kind of surfactants, which have been widely studied against a broad spectrum of microorganisms. However, the antifungal activity of this kind of compound has been less well investigated. The aim of this work is the study of the antifungal activity of two novel argininebased surfactants (N -benzoyl-arginine decylamide, Bz-Arg-NHC10 and N -benzoyl-arginine dodecylamide, Bz-Arg-NHC12), obtained by an enzymatic strategy, against phytopathogenic filamentous fungi and dermatophyte strains. Methods: Four phytopathogenic fungi (Fusarium oxysporum, Fusarium solani, Colletotrichum gloeosporioides and Colletotrichum lindemuthianum) and two human pathogenic fungi (dermatophytes Trichophyton rubrum and Trichophyton mentagrophytes) were tested. Inhibition of vegetative growth and conidia germination was investigated for the phytopathogenic fungi. In order to elucidate the possible mechanism of biocide action, membrane integrity, as well as the production of reactive oxygen species (ROS) were evaluated. Additionally, the inhibition of germination of dermatophyte microconidia due to both arginine-based surfactants was studied. Minimum inhibitory concentration, as well as the concentration that inhibits 50% of germination were determined for both compounds and both fungal strains. Results: For the vegetative growth of phytopathogenic fungi, the most potent arginine-based compound was Bz-Arg-NHC10. All the tested compounds interfered with the conidia development of the studied species. Investigation of the possible mechanism of toxicity towards phytopathogenic fungi indicated direct damage of the plasma membrane and production of ROS. For the two strains of dermatophyte fungi tested, all the proved compounds showed similar fungistatic efficacy. Conclusion: Bz-Arg-NHC10 and Bz-Arg-NHC12 were demonstrated to have broad biocidal ability against the proliferative vegetative form and the asexual reproductive conidia. Results suggest that both membrane permeabilization and induction of oxidative stress are part of the antifungal mechanisms involved in the interruption of normal conidia development by Bz-Arg-NHCn, leading to cell death.Centro de Investigación de Proteínas Vegetales2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf351-359http://sedici.unlp.edu.ar/handle/10915/92364enginfo:eu-repo/semantics/altIdentifier/issn/1573-4072info:eu-repo/semantics/altIdentifier/doi/10.2174/1573407214666180131161302info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:19:12Zoai:sedici.unlp.edu.ar:10915/92364Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:19:12.296SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Antifungal Activity of Arginine-Based Surfactants |
title |
Antifungal Activity of Arginine-Based Surfactants |
spellingShingle |
Antifungal Activity of Arginine-Based Surfactants Fait, María Elisa Biología Arginine-based surfactants Antifungal activity Phytopathogenic fungi Dermatophytes Membrane damage ROS production |
title_short |
Antifungal Activity of Arginine-Based Surfactants |
title_full |
Antifungal Activity of Arginine-Based Surfactants |
title_fullStr |
Antifungal Activity of Arginine-Based Surfactants |
title_full_unstemmed |
Antifungal Activity of Arginine-Based Surfactants |
title_sort |
Antifungal Activity of Arginine-Based Surfactants |
dc.creator.none.fl_str_mv |
Fait, María Elisa S. da Costa, Helen P. Freitas, Cleverson D. T. Bakás, Laura Susana Morcelle del Valle, Susana Raquel |
author |
Fait, María Elisa |
author_facet |
Fait, María Elisa S. da Costa, Helen P. Freitas, Cleverson D. T. Bakás, Laura Susana Morcelle del Valle, Susana Raquel |
author_role |
author |
author2 |
S. da Costa, Helen P. Freitas, Cleverson D. T. Bakás, Laura Susana Morcelle del Valle, Susana Raquel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Biología Arginine-based surfactants Antifungal activity Phytopathogenic fungi Dermatophytes Membrane damage ROS production |
topic |
Biología Arginine-based surfactants Antifungal activity Phytopathogenic fungi Dermatophytes Membrane damage ROS production |
dc.description.none.fl_txt_mv |
Background: Amino acid based surfactants constitute an important class of surface active biomolecules showing remarkable biocompatible properties. Antimicrobial activity is one of the most remarkable biological properties of this kind of surfactants, which have been widely studied against a broad spectrum of microorganisms. However, the antifungal activity of this kind of compound has been less well investigated. The aim of this work is the study of the antifungal activity of two novel argininebased surfactants (N -benzoyl-arginine decylamide, Bz-Arg-NHC10 and N -benzoyl-arginine dodecylamide, Bz-Arg-NHC12), obtained by an enzymatic strategy, against phytopathogenic filamentous fungi and dermatophyte strains. Methods: Four phytopathogenic fungi (Fusarium oxysporum, Fusarium solani, Colletotrichum gloeosporioides and Colletotrichum lindemuthianum) and two human pathogenic fungi (dermatophytes Trichophyton rubrum and Trichophyton mentagrophytes) were tested. Inhibition of vegetative growth and conidia germination was investigated for the phytopathogenic fungi. In order to elucidate the possible mechanism of biocide action, membrane integrity, as well as the production of reactive oxygen species (ROS) were evaluated. Additionally, the inhibition of germination of dermatophyte microconidia due to both arginine-based surfactants was studied. Minimum inhibitory concentration, as well as the concentration that inhibits 50% of germination were determined for both compounds and both fungal strains. Results: For the vegetative growth of phytopathogenic fungi, the most potent arginine-based compound was Bz-Arg-NHC10. All the tested compounds interfered with the conidia development of the studied species. Investigation of the possible mechanism of toxicity towards phytopathogenic fungi indicated direct damage of the plasma membrane and production of ROS. For the two strains of dermatophyte fungi tested, all the proved compounds showed similar fungistatic efficacy. Conclusion: Bz-Arg-NHC10 and Bz-Arg-NHC12 were demonstrated to have broad biocidal ability against the proliferative vegetative form and the asexual reproductive conidia. Results suggest that both membrane permeabilization and induction of oxidative stress are part of the antifungal mechanisms involved in the interruption of normal conidia development by Bz-Arg-NHCn, leading to cell death. Centro de Investigación de Proteínas Vegetales |
description |
Background: Amino acid based surfactants constitute an important class of surface active biomolecules showing remarkable biocompatible properties. Antimicrobial activity is one of the most remarkable biological properties of this kind of surfactants, which have been widely studied against a broad spectrum of microorganisms. However, the antifungal activity of this kind of compound has been less well investigated. The aim of this work is the study of the antifungal activity of two novel argininebased surfactants (N -benzoyl-arginine decylamide, Bz-Arg-NHC10 and N -benzoyl-arginine dodecylamide, Bz-Arg-NHC12), obtained by an enzymatic strategy, against phytopathogenic filamentous fungi and dermatophyte strains. Methods: Four phytopathogenic fungi (Fusarium oxysporum, Fusarium solani, Colletotrichum gloeosporioides and Colletotrichum lindemuthianum) and two human pathogenic fungi (dermatophytes Trichophyton rubrum and Trichophyton mentagrophytes) were tested. Inhibition of vegetative growth and conidia germination was investigated for the phytopathogenic fungi. In order to elucidate the possible mechanism of biocide action, membrane integrity, as well as the production of reactive oxygen species (ROS) were evaluated. Additionally, the inhibition of germination of dermatophyte microconidia due to both arginine-based surfactants was studied. Minimum inhibitory concentration, as well as the concentration that inhibits 50% of germination were determined for both compounds and both fungal strains. Results: For the vegetative growth of phytopathogenic fungi, the most potent arginine-based compound was Bz-Arg-NHC10. All the tested compounds interfered with the conidia development of the studied species. Investigation of the possible mechanism of toxicity towards phytopathogenic fungi indicated direct damage of the plasma membrane and production of ROS. For the two strains of dermatophyte fungi tested, all the proved compounds showed similar fungistatic efficacy. Conclusion: Bz-Arg-NHC10 and Bz-Arg-NHC12 were demonstrated to have broad biocidal ability against the proliferative vegetative form and the asexual reproductive conidia. Results suggest that both membrane permeabilization and induction of oxidative stress are part of the antifungal mechanisms involved in the interruption of normal conidia development by Bz-Arg-NHCn, leading to cell death. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/92364 |
url |
http://sedici.unlp.edu.ar/handle/10915/92364 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1573-4072 info:eu-repo/semantics/altIdentifier/doi/10.2174/1573407214666180131161302 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 351-359 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616065543307264 |
score |
13.070432 |