Optimization of a Line Detection Algorithm for Autonomous Vehicles on a RISC-V with Accelerator

Autores
Belda, María José; Olcoz, Katzalin; Castro, Fernando; Tirado, Francisco
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In recent years, autonomous vehicles have attracted the attention of many research groups, both in academia and business, including researchers from leading companies such as Google, Uber and Tesla. This type of vehicles are equipped with systems that are subject to very strict requirements, essentially aimed at performing safe operations -both for potential passengers and pedestrians- as well as carrying out the processing needed for decision making in real time. In many instances, general-purpose processors alone cannot ensure that these safety, reliability and real-time requirements are met, so it is common to implement heterogeneous systems by including accelerators. This paper explores the acceleration of a line detection application in the autonomous car environment using a heterogeneous system consisting of a general-purpose RISC-V core and a domain-specific accelerator. In particular, the application is analyzed to identify the most computationally intensive parts of the code and it is adapted accordingly for more efficient processing. Furthermore, the code is executed on the aforementioned hardware platform to verify that the execution effectively meets the existing requirements in autonomous vehicles, experiencing a 3.7x speedup with respect to running without accelerator.
En los últimos años los vehículos autónomos están atrayendo la atención de muchos grupos de investigación, tanto del ámbito académico como del empresarial, entre los que se incluyen investigadores pertenecientes a empresas punteras como Google, Uber o Tesla. Los sistemas de los que están dotados este tipo de vehículos están sometidos a requisitos muy estrictos relacionados esencialmente con la realización de operaciones seguras, tanto para los potenciales pasajeros como para los peatones, así como con que el procesamiento necesario para la toma de decisiones se realice en tiempo real. En muchas ocasiones, los procesadores de propósito general no pueden por sí solos garantizar el cumplimiento de estos requisitos de seguridad, fiabilidad y tiempo real, por lo que es común implementar sistemas heterogéneos mediante la inclusión de aceleradores. En este artículo se explora la aceleración de una aplicación de detección de líneas en el entorno de vehículos autónomos utilizando para ello un sistema heterogéneo formado por un core RISC-V de propósito general y un acelerador de dominio específico. En particular, se analiza dicha aplicación para identificar las partes del código más costosas computacionalmente y se adapta el código para un procesamiento más eficiente. Además, se ejecuta dicho código en la mencionada plataforma hardware y se comprueba que su procesamiento efectivamente cumple con los requisitos presentes en los vehículos autónomos, experimentando una reducción de 3.7x en su tiempo de ejecución con respecto a su ejecución sin acelerador.
Facultad de Informática
Materia
Ciencias Informáticas
Autonomous vehicles
Firesim
Image processing
Matrix accelerator
RISC-V
Vehículos autónomos
Firesim
Procesamiento de imágenes
Acelerador de matrices
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/146924

id SEDICI_6094285c6d73061dda6eba3d500056df
oai_identifier_str oai:sedici.unlp.edu.ar:10915/146924
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Optimization of a Line Detection Algorithm for Autonomous Vehicles on a RISC-V with AcceleratorOptimización de un Algoritmo de Detección de Líneas para Vehículos Autónomos en un RISC-V con AceleradorBelda, María JoséOlcoz, KatzalinCastro, FernandoTirado, FranciscoCiencias InformáticasAutonomous vehiclesFiresimImage processingMatrix acceleratorRISC-VVehículos autónomosFiresimProcesamiento de imágenesAcelerador de matricesIn recent years, autonomous vehicles have attracted the attention of many research groups, both in academia and business, including researchers from leading companies such as Google, Uber and Tesla. This type of vehicles are equipped with systems that are subject to very strict requirements, essentially aimed at performing safe operations -both for potential passengers and pedestrians- as well as carrying out the processing needed for decision making in real time. In many instances, general-purpose processors alone cannot ensure that these safety, reliability and real-time requirements are met, so it is common to implement heterogeneous systems by including accelerators. This paper explores the acceleration of a line detection application in the autonomous car environment using a heterogeneous system consisting of a general-purpose RISC-V core and a domain-specific accelerator. In particular, the application is analyzed to identify the most computationally intensive parts of the code and it is adapted accordingly for more efficient processing. Furthermore, the code is executed on the aforementioned hardware platform to verify that the execution effectively meets the existing requirements in autonomous vehicles, experiencing a 3.7x speedup with respect to running without accelerator.En los últimos años los vehículos autónomos están atrayendo la atención de muchos grupos de investigación, tanto del ámbito académico como del empresarial, entre los que se incluyen investigadores pertenecientes a empresas punteras como Google, Uber o Tesla. Los sistemas de los que están dotados este tipo de vehículos están sometidos a requisitos muy estrictos relacionados esencialmente con la realización de operaciones seguras, tanto para los potenciales pasajeros como para los peatones, así como con que el procesamiento necesario para la toma de decisiones se realice en tiempo real. En muchas ocasiones, los procesadores de propósito general no pueden por sí solos garantizar el cumplimiento de estos requisitos de seguridad, fiabilidad y tiempo real, por lo que es común implementar sistemas heterogéneos mediante la inclusión de aceleradores. En este artículo se explora la aceleración de una aplicación de detección de líneas en el entorno de vehículos autónomos utilizando para ello un sistema heterogéneo formado por un core RISC-V de propósito general y un acelerador de dominio específico. En particular, se analiza dicha aplicación para identificar las partes del código más costosas computacionalmente y se adapta el código para un procesamiento más eficiente. Además, se ejecuta dicho código en la mencionada plataforma hardware y se comprueba que su procesamiento efectivamente cumple con los requisitos presentes en los vehículos autónomos, experimentando una reducción de 3.7x en su tiempo de ejecución con respecto a su ejecución sin acelerador.Facultad de Informática2022-10-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/146924enginfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.22.e10info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:29:22Zoai:sedici.unlp.edu.ar:10915/146924Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:29:22.647SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Optimization of a Line Detection Algorithm for Autonomous Vehicles on a RISC-V with Accelerator
Optimización de un Algoritmo de Detección de Líneas para Vehículos Autónomos en un RISC-V con Acelerador
title Optimization of a Line Detection Algorithm for Autonomous Vehicles on a RISC-V with Accelerator
spellingShingle Optimization of a Line Detection Algorithm for Autonomous Vehicles on a RISC-V with Accelerator
Belda, María José
Ciencias Informáticas
Autonomous vehicles
Firesim
Image processing
Matrix accelerator
RISC-V
Vehículos autónomos
Firesim
Procesamiento de imágenes
Acelerador de matrices
title_short Optimization of a Line Detection Algorithm for Autonomous Vehicles on a RISC-V with Accelerator
title_full Optimization of a Line Detection Algorithm for Autonomous Vehicles on a RISC-V with Accelerator
title_fullStr Optimization of a Line Detection Algorithm for Autonomous Vehicles on a RISC-V with Accelerator
title_full_unstemmed Optimization of a Line Detection Algorithm for Autonomous Vehicles on a RISC-V with Accelerator
title_sort Optimization of a Line Detection Algorithm for Autonomous Vehicles on a RISC-V with Accelerator
dc.creator.none.fl_str_mv Belda, María José
Olcoz, Katzalin
Castro, Fernando
Tirado, Francisco
author Belda, María José
author_facet Belda, María José
Olcoz, Katzalin
Castro, Fernando
Tirado, Francisco
author_role author
author2 Olcoz, Katzalin
Castro, Fernando
Tirado, Francisco
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Autonomous vehicles
Firesim
Image processing
Matrix accelerator
RISC-V
Vehículos autónomos
Firesim
Procesamiento de imágenes
Acelerador de matrices
topic Ciencias Informáticas
Autonomous vehicles
Firesim
Image processing
Matrix accelerator
RISC-V
Vehículos autónomos
Firesim
Procesamiento de imágenes
Acelerador de matrices
dc.description.none.fl_txt_mv In recent years, autonomous vehicles have attracted the attention of many research groups, both in academia and business, including researchers from leading companies such as Google, Uber and Tesla. This type of vehicles are equipped with systems that are subject to very strict requirements, essentially aimed at performing safe operations -both for potential passengers and pedestrians- as well as carrying out the processing needed for decision making in real time. In many instances, general-purpose processors alone cannot ensure that these safety, reliability and real-time requirements are met, so it is common to implement heterogeneous systems by including accelerators. This paper explores the acceleration of a line detection application in the autonomous car environment using a heterogeneous system consisting of a general-purpose RISC-V core and a domain-specific accelerator. In particular, the application is analyzed to identify the most computationally intensive parts of the code and it is adapted accordingly for more efficient processing. Furthermore, the code is executed on the aforementioned hardware platform to verify that the execution effectively meets the existing requirements in autonomous vehicles, experiencing a 3.7x speedup with respect to running without accelerator.
En los últimos años los vehículos autónomos están atrayendo la atención de muchos grupos de investigación, tanto del ámbito académico como del empresarial, entre los que se incluyen investigadores pertenecientes a empresas punteras como Google, Uber o Tesla. Los sistemas de los que están dotados este tipo de vehículos están sometidos a requisitos muy estrictos relacionados esencialmente con la realización de operaciones seguras, tanto para los potenciales pasajeros como para los peatones, así como con que el procesamiento necesario para la toma de decisiones se realice en tiempo real. En muchas ocasiones, los procesadores de propósito general no pueden por sí solos garantizar el cumplimiento de estos requisitos de seguridad, fiabilidad y tiempo real, por lo que es común implementar sistemas heterogéneos mediante la inclusión de aceleradores. En este artículo se explora la aceleración de una aplicación de detección de líneas en el entorno de vehículos autónomos utilizando para ello un sistema heterogéneo formado por un core RISC-V de propósito general y un acelerador de dominio específico. En particular, se analiza dicha aplicación para identificar las partes del código más costosas computacionalmente y se adapta el código para un procesamiento más eficiente. Además, se ejecuta dicho código en la mencionada plataforma hardware y se comprueba que su procesamiento efectivamente cumple con los requisitos presentes en los vehículos autónomos, experimentando una reducción de 3.7x en su tiempo de ejecución con respecto a su ejecución sin acelerador.
Facultad de Informática
description In recent years, autonomous vehicles have attracted the attention of many research groups, both in academia and business, including researchers from leading companies such as Google, Uber and Tesla. This type of vehicles are equipped with systems that are subject to very strict requirements, essentially aimed at performing safe operations -both for potential passengers and pedestrians- as well as carrying out the processing needed for decision making in real time. In many instances, general-purpose processors alone cannot ensure that these safety, reliability and real-time requirements are met, so it is common to implement heterogeneous systems by including accelerators. This paper explores the acceleration of a line detection application in the autonomous car environment using a heterogeneous system consisting of a general-purpose RISC-V core and a domain-specific accelerator. In particular, the application is analyzed to identify the most computationally intensive parts of the code and it is adapted accordingly for more efficient processing. Furthermore, the code is executed on the aforementioned hardware platform to verify that the execution effectively meets the existing requirements in autonomous vehicles, experiencing a 3.7x speedup with respect to running without accelerator.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-17
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/146924
url http://sedici.unlp.edu.ar/handle/10915/146924
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1666-6038
info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.22.e10
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064334885617664
score 13.22299