Técnicas de extracción de entidades con nombre
- Autores
- Pérez Abelleira, M. Alicia
- Año de publicación
- 2013
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- La minería de textos tiene un importante potencial, ya que gran parte de la información de las organizaciones está disponible en documentos de texto u otra información no estructurada. Una de las tareas integrales de la minería de textos es la extracción de entidades con nombre (NER). El presente trabajo describe los principales enfoques en uso para esta tarea y los aplica a un problema concreto, la extracción de información de un corpus de 8000 documentos correspondientes a resoluciones rectorales. Los experimentos muestran que los campos aleatorios condicionales (CRFs) son la técnica más adecuada para este problema. El trabajo describe también la arquitectura para la gestión de información no estructurada en la que se enmarca esta tarea y de la que forma parte.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
NER
HMM
CRF
minería de texto
UIMA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/76216
Ver los metadatos del registro completo
id |
SEDICI_5fe619fc4bb65e72a16084df0e57114a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/76216 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Técnicas de extracción de entidades con nombrePérez Abelleira, M. AliciaCiencias InformáticasNERHMMCRFminería de textoUIMALa minería de textos tiene un importante potencial, ya que gran parte de la información de las organizaciones está disponible en documentos de texto u otra información no estructurada. Una de las tareas integrales de la minería de textos es la extracción de entidades con nombre (NER). El presente trabajo describe los principales enfoques en uso para esta tarea y los aplica a un problema concreto, la extracción de información de un corpus de 8000 documentos correspondientes a resoluciones rectorales. Los experimentos muestran que los campos aleatorios condicionales (CRFs) son la técnica más adecuada para este problema. El trabajo describe también la arquitectura para la gestión de información no estructurada en la que se enmarca esta tarea y de la que forma parte.Sociedad Argentina de Informática e Investigación Operativa2013-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf109-120http://sedici.unlp.edu.ar/handle/10915/76216spainfo:eu-repo/semantics/altIdentifier/url/http://42jaiio.sadio.org.ar/proceedings/simposios/Trabajos/ASAI/10.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2784info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:54:17Zoai:sedici.unlp.edu.ar:10915/76216Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:54:17.933SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Técnicas de extracción de entidades con nombre |
title |
Técnicas de extracción de entidades con nombre |
spellingShingle |
Técnicas de extracción de entidades con nombre Pérez Abelleira, M. Alicia Ciencias Informáticas NER HMM CRF minería de texto UIMA |
title_short |
Técnicas de extracción de entidades con nombre |
title_full |
Técnicas de extracción de entidades con nombre |
title_fullStr |
Técnicas de extracción de entidades con nombre |
title_full_unstemmed |
Técnicas de extracción de entidades con nombre |
title_sort |
Técnicas de extracción de entidades con nombre |
dc.creator.none.fl_str_mv |
Pérez Abelleira, M. Alicia |
author |
Pérez Abelleira, M. Alicia |
author_facet |
Pérez Abelleira, M. Alicia |
author_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas NER HMM CRF minería de texto UIMA |
topic |
Ciencias Informáticas NER HMM CRF minería de texto UIMA |
dc.description.none.fl_txt_mv |
La minería de textos tiene un importante potencial, ya que gran parte de la información de las organizaciones está disponible en documentos de texto u otra información no estructurada. Una de las tareas integrales de la minería de textos es la extracción de entidades con nombre (NER). El presente trabajo describe los principales enfoques en uso para esta tarea y los aplica a un problema concreto, la extracción de información de un corpus de 8000 documentos correspondientes a resoluciones rectorales. Los experimentos muestran que los campos aleatorios condicionales (CRFs) son la técnica más adecuada para este problema. El trabajo describe también la arquitectura para la gestión de información no estructurada en la que se enmarca esta tarea y de la que forma parte. Sociedad Argentina de Informática e Investigación Operativa |
description |
La minería de textos tiene un importante potencial, ya que gran parte de la información de las organizaciones está disponible en documentos de texto u otra información no estructurada. Una de las tareas integrales de la minería de textos es la extracción de entidades con nombre (NER). El presente trabajo describe los principales enfoques en uso para esta tarea y los aplica a un problema concreto, la extracción de información de un corpus de 8000 documentos correspondientes a resoluciones rectorales. Los experimentos muestran que los campos aleatorios condicionales (CRFs) son la técnica más adecuada para este problema. El trabajo describe también la arquitectura para la gestión de información no estructurada en la que se enmarca esta tarea y de la que forma parte. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/76216 |
url |
http://sedici.unlp.edu.ar/handle/10915/76216 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://42jaiio.sadio.org.ar/proceedings/simposios/Trabajos/ASAI/10.pdf info:eu-repo/semantics/altIdentifier/issn/1850-2784 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 109-120 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846783128691015680 |
score |
12.982451 |