How to solve it by knowledge mining
- Autores
- Sampaio, Pedro Rafael Falcone
- Año de publicación
- 1995
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Frequently we become amazed with the increasing number of problems to be solved that fiourish while facing daily activities. Often, related to these problems we llave also an incredible amount oí data. Since we cannot allways afford time and resources to sol ve them, we keep on gathering and storing data in large databases, widening the gap between raw and interpreted data. At this point we should refiect about Polya's maxima "A great discovery solves a great problem" and realize that databases encompass the knowledge necessary for guiding the decision making process. The question that remains is how to organize and explore this knowledge. This paper presents sorne approaches to knowledge discovery in databases íound in the literature, analyzing issues in classifying and clustering large data sets.
Eje: 2do. Workshop sobre aspectos teóricos de la inteligencia artificial
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Knowledge Mining
ARTIFICIAL INTELLIGENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/24323
Ver los metadatos del registro completo
id |
SEDICI_5f42baf309c94a65745e50b4530c3614 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/24323 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
How to solve it by knowledge miningSampaio, Pedro Rafael FalconeCiencias InformáticasKnowledge MiningARTIFICIAL INTELLIGENCEFrequently we become amazed with the increasing number of problems to be solved that fiourish while facing daily activities. Often, related to these problems we llave also an incredible amount oí data. Since we cannot allways afford time and resources to sol ve them, we keep on gathering and storing data in large databases, widening the gap between raw and interpreted data. At this point we should refiect about Polya's maxima "A great discovery solves a great problem" and realize that databases encompass the knowledge necessary for guiding the decision making process. The question that remains is how to organize and explore this knowledge. This paper presents sorne approaches to knowledge discovery in databases íound in the literature, analyzing issues in classifying and clustering large data sets.Eje: 2do. Workshop sobre aspectos teóricos de la inteligencia artificialRed de Universidades con Carreras en Informática (RedUNCI)1995-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf438-449http://sedici.unlp.edu.ar/handle/10915/24323enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:49Zoai:sedici.unlp.edu.ar:10915/24323Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:50.214SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
How to solve it by knowledge mining |
title |
How to solve it by knowledge mining |
spellingShingle |
How to solve it by knowledge mining Sampaio, Pedro Rafael Falcone Ciencias Informáticas Knowledge Mining ARTIFICIAL INTELLIGENCE |
title_short |
How to solve it by knowledge mining |
title_full |
How to solve it by knowledge mining |
title_fullStr |
How to solve it by knowledge mining |
title_full_unstemmed |
How to solve it by knowledge mining |
title_sort |
How to solve it by knowledge mining |
dc.creator.none.fl_str_mv |
Sampaio, Pedro Rafael Falcone |
author |
Sampaio, Pedro Rafael Falcone |
author_facet |
Sampaio, Pedro Rafael Falcone |
author_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Knowledge Mining ARTIFICIAL INTELLIGENCE |
topic |
Ciencias Informáticas Knowledge Mining ARTIFICIAL INTELLIGENCE |
dc.description.none.fl_txt_mv |
Frequently we become amazed with the increasing number of problems to be solved that fiourish while facing daily activities. Often, related to these problems we llave also an incredible amount oí data. Since we cannot allways afford time and resources to sol ve them, we keep on gathering and storing data in large databases, widening the gap between raw and interpreted data. At this point we should refiect about Polya's maxima "A great discovery solves a great problem" and realize that databases encompass the knowledge necessary for guiding the decision making process. The question that remains is how to organize and explore this knowledge. This paper presents sorne approaches to knowledge discovery in databases íound in the literature, analyzing issues in classifying and clustering large data sets. Eje: 2do. Workshop sobre aspectos teóricos de la inteligencia artificial Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Frequently we become amazed with the increasing number of problems to be solved that fiourish while facing daily activities. Often, related to these problems we llave also an incredible amount oí data. Since we cannot allways afford time and resources to sol ve them, we keep on gathering and storing data in large databases, widening the gap between raw and interpreted data. At this point we should refiect about Polya's maxima "A great discovery solves a great problem" and realize that databases encompass the knowledge necessary for guiding the decision making process. The question that remains is how to organize and explore this knowledge. This paper presents sorne approaches to knowledge discovery in databases íound in the literature, analyzing issues in classifying and clustering large data sets. |
publishDate |
1995 |
dc.date.none.fl_str_mv |
1995-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/24323 |
url |
http://sedici.unlp.edu.ar/handle/10915/24323 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 438-449 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615817664135168 |
score |
13.070432 |