Precompiled knowledge support for dynamic argumentation
- Autores
- Capobianco, Marcela; Chesñevar, Carlos Iván; Simari, Guillermo Ricardo
- Año de publicación
- 2002
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Argumentative formalisms have been widely recognized as knowledge representation and reasoning tools able to deal with incomplete and potentially contradictory informa- tion. All such formalisms are computationally demanding. Hence, optimizing argumen- tative systems has been approached from di erent views. We have developed a new proposal to solve the aforementioned problem. The key to our approach consists in maintaining a module associated with the knowledge base of the system, with additional information that may help to speed up the inference process. As truth maintenance systems optimize general problem solvers, this module could play a similar role in argumentative systems.
Eje: Lógica e Inteligencia artificial
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
knowledge representation
argumentation
rational agents - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23111
Ver los metadatos del registro completo
id |
SEDICI_10f4db786df06a452dc28318dde7545d |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23111 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Precompiled knowledge support for dynamic argumentationCapobianco, MarcelaChesñevar, Carlos IvánSimari, Guillermo RicardoCiencias InformáticasARTIFICIAL INTELLIGENCEknowledge representationargumentationrational agentsArgumentative formalisms have been widely recognized as knowledge representation and reasoning tools able to deal with incomplete and potentially contradictory informa- tion. All such formalisms are computationally demanding. Hence, optimizing argumen- tative systems has been approached from di erent views. We have developed a new proposal to solve the aforementioned problem. The key to our approach consists in maintaining a module associated with the knowledge base of the system, with additional information that may help to speed up the inference process. As truth maintenance systems optimize general problem solvers, this module could play a similar role in argumentative systems.Eje: Lógica e Inteligencia artificialRed de Universidades con Carreras en Informática (RedUNCI)2002-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf217-228http://sedici.unlp.edu.ar/handle/10915/23111spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:47:56Zoai:sedici.unlp.edu.ar:10915/23111Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:47:56.501SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Precompiled knowledge support for dynamic argumentation |
title |
Precompiled knowledge support for dynamic argumentation |
spellingShingle |
Precompiled knowledge support for dynamic argumentation Capobianco, Marcela Ciencias Informáticas ARTIFICIAL INTELLIGENCE knowledge representation argumentation rational agents |
title_short |
Precompiled knowledge support for dynamic argumentation |
title_full |
Precompiled knowledge support for dynamic argumentation |
title_fullStr |
Precompiled knowledge support for dynamic argumentation |
title_full_unstemmed |
Precompiled knowledge support for dynamic argumentation |
title_sort |
Precompiled knowledge support for dynamic argumentation |
dc.creator.none.fl_str_mv |
Capobianco, Marcela Chesñevar, Carlos Iván Simari, Guillermo Ricardo |
author |
Capobianco, Marcela |
author_facet |
Capobianco, Marcela Chesñevar, Carlos Iván Simari, Guillermo Ricardo |
author_role |
author |
author2 |
Chesñevar, Carlos Iván Simari, Guillermo Ricardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas ARTIFICIAL INTELLIGENCE knowledge representation argumentation rational agents |
topic |
Ciencias Informáticas ARTIFICIAL INTELLIGENCE knowledge representation argumentation rational agents |
dc.description.none.fl_txt_mv |
Argumentative formalisms have been widely recognized as knowledge representation and reasoning tools able to deal with incomplete and potentially contradictory informa- tion. All such formalisms are computationally demanding. Hence, optimizing argumen- tative systems has been approached from di erent views. We have developed a new proposal to solve the aforementioned problem. The key to our approach consists in maintaining a module associated with the knowledge base of the system, with additional information that may help to speed up the inference process. As truth maintenance systems optimize general problem solvers, this module could play a similar role in argumentative systems. Eje: Lógica e Inteligencia artificial Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Argumentative formalisms have been widely recognized as knowledge representation and reasoning tools able to deal with incomplete and potentially contradictory informa- tion. All such formalisms are computationally demanding. Hence, optimizing argumen- tative systems has been approached from di erent views. We have developed a new proposal to solve the aforementioned problem. The key to our approach consists in maintaining a module associated with the knowledge base of the system, with additional information that may help to speed up the inference process. As truth maintenance systems optimize general problem solvers, this module could play a similar role in argumentative systems. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23111 |
url |
http://sedici.unlp.edu.ar/handle/10915/23111 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 217-228 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063906372452352 |
score |
13.22299 |