Approximate optimal control applied to constrained continuos processes
- Autores
- Pucheta, Julián Antonio; Kuchen, Benjamín Rafael; Schugurensky, C.; Fullana, R.
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Constrained continuous processes can be optimally controlled through dynamic programming techniques that solve it as a numeric sequence. These techniques are a powerful tool, regardless the nature of the system and its proposed performance index. This technique is a powerful tool, regardless the system’s nature and arbitrary performance index. However, some problems may arise in calculations as the problem dimensionality increases –a factor closely related to the desired accuracy for the numeric solution. An alternative is used here to solve the dimensionality problem, both to approach the performance index and the control law. The present work aims at outlining the approximate optimal control applied to infinite horizon continuous processes. A main contribution is to generate an application methodology that ensures the convergence of the algorithm. Upon obtaining the approximate control law, a comparative analysis of the controller performance demonstrates the potential of the proposed control scheme.
Eje: Control y electrónica
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Control
Electronics
Neural nets
Optimal control
neural network
nonlinear systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22926
Ver los metadatos del registro completo
id |
SEDICI_5c7a202501e0637a55ea95c0f9e865c2 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22926 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Approximate optimal control applied to constrained continuos processesPucheta, Julián AntonioKuchen, Benjamín RafaelSchugurensky, C.Fullana, R.Ciencias InformáticasControlElectronicsNeural netsOptimal controlneural networknonlinear systemsConstrained continuous processes can be optimally controlled through dynamic programming techniques that solve it as a numeric sequence. These techniques are a powerful tool, regardless the nature of the system and its proposed performance index. This technique is a powerful tool, regardless the system’s nature and arbitrary performance index. However, some problems may arise in calculations as the problem dimensionality increases –a factor closely related to the desired accuracy for the numeric solution. An alternative is used here to solve the dimensionality problem, both to approach the performance index and the control law. The present work aims at outlining the approximate optimal control applied to infinite horizon continuous processes. A main contribution is to generate an application methodology that ensures the convergence of the algorithm. Upon obtaining the approximate control law, a comparative analysis of the controller performance demonstrates the potential of the proposed control scheme.Eje: Control y electrónicaRed de Universidades con Carreras en Informática (RedUNCI)2002-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf810-820http://sedici.unlp.edu.ar/handle/10915/22926enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:12Zoai:sedici.unlp.edu.ar:10915/22926Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:13.187SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Approximate optimal control applied to constrained continuos processes |
title |
Approximate optimal control applied to constrained continuos processes |
spellingShingle |
Approximate optimal control applied to constrained continuos processes Pucheta, Julián Antonio Ciencias Informáticas Control Electronics Neural nets Optimal control neural network nonlinear systems |
title_short |
Approximate optimal control applied to constrained continuos processes |
title_full |
Approximate optimal control applied to constrained continuos processes |
title_fullStr |
Approximate optimal control applied to constrained continuos processes |
title_full_unstemmed |
Approximate optimal control applied to constrained continuos processes |
title_sort |
Approximate optimal control applied to constrained continuos processes |
dc.creator.none.fl_str_mv |
Pucheta, Julián Antonio Kuchen, Benjamín Rafael Schugurensky, C. Fullana, R. |
author |
Pucheta, Julián Antonio |
author_facet |
Pucheta, Julián Antonio Kuchen, Benjamín Rafael Schugurensky, C. Fullana, R. |
author_role |
author |
author2 |
Kuchen, Benjamín Rafael Schugurensky, C. Fullana, R. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Control Electronics Neural nets Optimal control neural network nonlinear systems |
topic |
Ciencias Informáticas Control Electronics Neural nets Optimal control neural network nonlinear systems |
dc.description.none.fl_txt_mv |
Constrained continuous processes can be optimally controlled through dynamic programming techniques that solve it as a numeric sequence. These techniques are a powerful tool, regardless the nature of the system and its proposed performance index. This technique is a powerful tool, regardless the system’s nature and arbitrary performance index. However, some problems may arise in calculations as the problem dimensionality increases –a factor closely related to the desired accuracy for the numeric solution. An alternative is used here to solve the dimensionality problem, both to approach the performance index and the control law. The present work aims at outlining the approximate optimal control applied to infinite horizon continuous processes. A main contribution is to generate an application methodology that ensures the convergence of the algorithm. Upon obtaining the approximate control law, a comparative analysis of the controller performance demonstrates the potential of the proposed control scheme. Eje: Control y electrónica Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Constrained continuous processes can be optimally controlled through dynamic programming techniques that solve it as a numeric sequence. These techniques are a powerful tool, regardless the nature of the system and its proposed performance index. This technique is a powerful tool, regardless the system’s nature and arbitrary performance index. However, some problems may arise in calculations as the problem dimensionality increases –a factor closely related to the desired accuracy for the numeric solution. An alternative is used here to solve the dimensionality problem, both to approach the performance index and the control law. The present work aims at outlining the approximate optimal control applied to infinite horizon continuous processes. A main contribution is to generate an application methodology that ensures the convergence of the algorithm. Upon obtaining the approximate control law, a comparative analysis of the controller performance demonstrates the potential of the proposed control scheme. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22926 |
url |
http://sedici.unlp.edu.ar/handle/10915/22926 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 810-820 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615811374776320 |
score |
13.070432 |