Approximate optimal control applied to constrained continuos processes

Autores
Pucheta, Julián Antonio; Kuchen, Benjamín Rafael; Schugurensky, C.; Fullana, R.
Año de publicación
2002
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Constrained continuous processes can be optimally controlled through dynamic programming techniques that solve it as a numeric sequence. These techniques are a powerful tool, regardless the nature of the system and its proposed performance index. This technique is a powerful tool, regardless the system’s nature and arbitrary performance index. However, some problems may arise in calculations as the problem dimensionality increases –a factor closely related to the desired accuracy for the numeric solution. An alternative is used here to solve the dimensionality problem, both to approach the performance index and the control law. The present work aims at outlining the approximate optimal control applied to infinite horizon continuous processes. A main contribution is to generate an application methodology that ensures the convergence of the algorithm. Upon obtaining the approximate control law, a comparative analysis of the controller performance demonstrates the potential of the proposed control scheme.
Eje: Control y electrónica
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Control
Electronics
Neural nets
Optimal control
neural network
nonlinear systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/22926

id SEDICI_5c7a202501e0637a55ea95c0f9e865c2
oai_identifier_str oai:sedici.unlp.edu.ar:10915/22926
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Approximate optimal control applied to constrained continuos processesPucheta, Julián AntonioKuchen, Benjamín RafaelSchugurensky, C.Fullana, R.Ciencias InformáticasControlElectronicsNeural netsOptimal controlneural networknonlinear systemsConstrained continuous processes can be optimally controlled through dynamic programming techniques that solve it as a numeric sequence. These techniques are a powerful tool, regardless the nature of the system and its proposed performance index. This technique is a powerful tool, regardless the system’s nature and arbitrary performance index. However, some problems may arise in calculations as the problem dimensionality increases –a factor closely related to the desired accuracy for the numeric solution. An alternative is used here to solve the dimensionality problem, both to approach the performance index and the control law. The present work aims at outlining the approximate optimal control applied to infinite horizon continuous processes. A main contribution is to generate an application methodology that ensures the convergence of the algorithm. Upon obtaining the approximate control law, a comparative analysis of the controller performance demonstrates the potential of the proposed control scheme.Eje: Control y electrónicaRed de Universidades con Carreras en Informática (RedUNCI)2002-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf810-820http://sedici.unlp.edu.ar/handle/10915/22926enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:12Zoai:sedici.unlp.edu.ar:10915/22926Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:13.187SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Approximate optimal control applied to constrained continuos processes
title Approximate optimal control applied to constrained continuos processes
spellingShingle Approximate optimal control applied to constrained continuos processes
Pucheta, Julián Antonio
Ciencias Informáticas
Control
Electronics
Neural nets
Optimal control
neural network
nonlinear systems
title_short Approximate optimal control applied to constrained continuos processes
title_full Approximate optimal control applied to constrained continuos processes
title_fullStr Approximate optimal control applied to constrained continuos processes
title_full_unstemmed Approximate optimal control applied to constrained continuos processes
title_sort Approximate optimal control applied to constrained continuos processes
dc.creator.none.fl_str_mv Pucheta, Julián Antonio
Kuchen, Benjamín Rafael
Schugurensky, C.
Fullana, R.
author Pucheta, Julián Antonio
author_facet Pucheta, Julián Antonio
Kuchen, Benjamín Rafael
Schugurensky, C.
Fullana, R.
author_role author
author2 Kuchen, Benjamín Rafael
Schugurensky, C.
Fullana, R.
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Control
Electronics
Neural nets
Optimal control
neural network
nonlinear systems
topic Ciencias Informáticas
Control
Electronics
Neural nets
Optimal control
neural network
nonlinear systems
dc.description.none.fl_txt_mv Constrained continuous processes can be optimally controlled through dynamic programming techniques that solve it as a numeric sequence. These techniques are a powerful tool, regardless the nature of the system and its proposed performance index. This technique is a powerful tool, regardless the system’s nature and arbitrary performance index. However, some problems may arise in calculations as the problem dimensionality increases –a factor closely related to the desired accuracy for the numeric solution. An alternative is used here to solve the dimensionality problem, both to approach the performance index and the control law. The present work aims at outlining the approximate optimal control applied to infinite horizon continuous processes. A main contribution is to generate an application methodology that ensures the convergence of the algorithm. Upon obtaining the approximate control law, a comparative analysis of the controller performance demonstrates the potential of the proposed control scheme.
Eje: Control y electrónica
Red de Universidades con Carreras en Informática (RedUNCI)
description Constrained continuous processes can be optimally controlled through dynamic programming techniques that solve it as a numeric sequence. These techniques are a powerful tool, regardless the nature of the system and its proposed performance index. This technique is a powerful tool, regardless the system’s nature and arbitrary performance index. However, some problems may arise in calculations as the problem dimensionality increases –a factor closely related to the desired accuracy for the numeric solution. An alternative is used here to solve the dimensionality problem, both to approach the performance index and the control law. The present work aims at outlining the approximate optimal control applied to infinite horizon continuous processes. A main contribution is to generate an application methodology that ensures the convergence of the algorithm. Upon obtaining the approximate control law, a comparative analysis of the controller performance demonstrates the potential of the proposed control scheme.
publishDate 2002
dc.date.none.fl_str_mv 2002-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/22926
url http://sedici.unlp.edu.ar/handle/10915/22926
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
810-820
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615811374776320
score 13.070432