Sistemas meta-heurísticos para resolver problemas de optimización
- Autores
- Alfonso, Hugo; Graglia, Patricia; Minetti, Gabriela F.; Salto, Carolina; Stark, Natalia
- Año de publicación
- 2007
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Esta línea de investigación se centra en el diseño y el desarrollo de algoritmos heurísticos y metaheurísticos que resuelvan problemas de optimización. En particular se pondrá especial énfasis en problemas tales como: el de corte y empaquetado y el de ruteo vehicular. Tanto la optimización de la planificación de recursos como la de generación de patrones de cortes, reducen significativamente los costos de los distintos recursos involucrados. Otro problema atacado es el de secuenciamiento genético, específicamente el de ensamblado de fragmentos de ADN (ácido desoxirribonucleico). Donde los volúmenes y la variedad de la información generada han crecido inconmensurablemente, hecho provocado por los importantes avances dados en la biología molecular y las técnicas subyacentes. Por lo tanto se necesitan de métodos de optimización que permitan estudiar la información funcional y estructural de una secuencia desconocida de ADN. Las metaheurísticas y las técnicas modernas de la inteligencia artificial han sido juzgadas o evaluadas como eficientes por la comunidad científica, ya que con un esfuerzo limitado se pueden alcanzar buenos resultados con gran versatilidad. En la actualidad dos de las ramas con más éxito para diseñar meta-heurísticas, y dar solución a estos problemas, son la hibridación y el paralelismo.
Eje: Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Sistemas meta-heurísticos
Optimización
Intelligent agents
problemas de optimización - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/20327
Ver los metadatos del registro completo
id |
SEDICI_589e3aa4c6dbc158e7128899f1a84b55 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/20327 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Sistemas meta-heurísticos para resolver problemas de optimizaciónAlfonso, HugoGraglia, PatriciaMinetti, Gabriela F.Salto, CarolinaStark, NataliaCiencias InformáticasSistemas meta-heurísticosOptimizaciónIntelligent agentsproblemas de optimizaciónEsta línea de investigación se centra en el diseño y el desarrollo de algoritmos heurísticos y metaheurísticos que resuelvan problemas de optimización. En particular se pondrá especial énfasis en problemas tales como: el de corte y empaquetado y el de ruteo vehicular. Tanto la optimización de la planificación de recursos como la de generación de patrones de cortes, reducen significativamente los costos de los distintos recursos involucrados. Otro problema atacado es el de secuenciamiento genético, específicamente el de ensamblado de fragmentos de ADN (ácido desoxirribonucleico). Donde los volúmenes y la variedad de la información generada han crecido inconmensurablemente, hecho provocado por los importantes avances dados en la biología molecular y las técnicas subyacentes. Por lo tanto se necesitan de métodos de optimización que permitan estudiar la información funcional y estructural de una secuencia desconocida de ADN. Las metaheurísticas y las técnicas modernas de la inteligencia artificial han sido juzgadas o evaluadas como eficientes por la comunidad científica, ya que con un esfuerzo limitado se pueden alcanzar buenos resultados con gran versatilidad. En la actualidad dos de las ramas con más éxito para diseñar meta-heurísticas, y dar solución a estos problemas, son la hibridación y el paralelismo.Eje: Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)2007-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf152-155http://sedici.unlp.edu.ar/handle/10915/20327spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-763-075-0info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:04Zoai:sedici.unlp.edu.ar:10915/20327Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:04.619SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Sistemas meta-heurísticos para resolver problemas de optimización |
title |
Sistemas meta-heurísticos para resolver problemas de optimización |
spellingShingle |
Sistemas meta-heurísticos para resolver problemas de optimización Alfonso, Hugo Ciencias Informáticas Sistemas meta-heurísticos Optimización Intelligent agents problemas de optimización |
title_short |
Sistemas meta-heurísticos para resolver problemas de optimización |
title_full |
Sistemas meta-heurísticos para resolver problemas de optimización |
title_fullStr |
Sistemas meta-heurísticos para resolver problemas de optimización |
title_full_unstemmed |
Sistemas meta-heurísticos para resolver problemas de optimización |
title_sort |
Sistemas meta-heurísticos para resolver problemas de optimización |
dc.creator.none.fl_str_mv |
Alfonso, Hugo Graglia, Patricia Minetti, Gabriela F. Salto, Carolina Stark, Natalia |
author |
Alfonso, Hugo |
author_facet |
Alfonso, Hugo Graglia, Patricia Minetti, Gabriela F. Salto, Carolina Stark, Natalia |
author_role |
author |
author2 |
Graglia, Patricia Minetti, Gabriela F. Salto, Carolina Stark, Natalia |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Sistemas meta-heurísticos Optimización Intelligent agents problemas de optimización |
topic |
Ciencias Informáticas Sistemas meta-heurísticos Optimización Intelligent agents problemas de optimización |
dc.description.none.fl_txt_mv |
Esta línea de investigación se centra en el diseño y el desarrollo de algoritmos heurísticos y metaheurísticos que resuelvan problemas de optimización. En particular se pondrá especial énfasis en problemas tales como: el de corte y empaquetado y el de ruteo vehicular. Tanto la optimización de la planificación de recursos como la de generación de patrones de cortes, reducen significativamente los costos de los distintos recursos involucrados. Otro problema atacado es el de secuenciamiento genético, específicamente el de ensamblado de fragmentos de ADN (ácido desoxirribonucleico). Donde los volúmenes y la variedad de la información generada han crecido inconmensurablemente, hecho provocado por los importantes avances dados en la biología molecular y las técnicas subyacentes. Por lo tanto se necesitan de métodos de optimización que permitan estudiar la información funcional y estructural de una secuencia desconocida de ADN. Las metaheurísticas y las técnicas modernas de la inteligencia artificial han sido juzgadas o evaluadas como eficientes por la comunidad científica, ya que con un esfuerzo limitado se pueden alcanzar buenos resultados con gran versatilidad. En la actualidad dos de las ramas con más éxito para diseñar meta-heurísticas, y dar solución a estos problemas, son la hibridación y el paralelismo. Eje: Agentes y Sistemas Inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Esta línea de investigación se centra en el diseño y el desarrollo de algoritmos heurísticos y metaheurísticos que resuelvan problemas de optimización. En particular se pondrá especial énfasis en problemas tales como: el de corte y empaquetado y el de ruteo vehicular. Tanto la optimización de la planificación de recursos como la de generación de patrones de cortes, reducen significativamente los costos de los distintos recursos involucrados. Otro problema atacado es el de secuenciamiento genético, específicamente el de ensamblado de fragmentos de ADN (ácido desoxirribonucleico). Donde los volúmenes y la variedad de la información generada han crecido inconmensurablemente, hecho provocado por los importantes avances dados en la biología molecular y las técnicas subyacentes. Por lo tanto se necesitan de métodos de optimización que permitan estudiar la información funcional y estructural de una secuencia desconocida de ADN. Las metaheurísticas y las técnicas modernas de la inteligencia artificial han sido juzgadas o evaluadas como eficientes por la comunidad científica, ya que con un esfuerzo limitado se pueden alcanzar buenos resultados con gran versatilidad. En la actualidad dos de las ramas con más éxito para diseñar meta-heurísticas, y dar solución a estos problemas, son la hibridación y el paralelismo. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/20327 |
url |
http://sedici.unlp.edu.ar/handle/10915/20327 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-763-075-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 152-155 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260106338631680 |
score |
13.13397 |