Cocomplete toposes whose exact completions are toposes
- Autores
- Menni, Matías
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let ε be a cocomplete topos. We show that if the exact completion of ε is a topos then every indecomposable object in ε is an atom. As a corollary we characterize the locally connected Grothendieck toposes whose exact completions are toposes. This result strengthens both the Lawvere-Schanuel characterization of Boolean presheaf toposes and Hofstra's characterization of the locally connected Grothendieck toposes whose exact completion is a Grothendieck topos. We also show that for any topological space X, the exact completion of Sh (X) is a topos if and only if X is discrete. The corollary in this case characterizes the Grothendieck toposes with enough points whose exact completions are toposes.
Laboratorio de Investigación y Formación en Informática Avanzada - Materia
-
Ciencias Informáticas
cocomplete topos
Grothendieck toposes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/83213
Ver los metadatos del registro completo
| id |
SEDICI_5763b25a12e5af0ef67672cd8929161f |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/83213 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Cocomplete toposes whose exact completions are toposesMenni, MatíasCiencias Informáticascocomplete toposGrothendieck toposesLet ε be a cocomplete topos. We show that if the exact completion of ε is a topos then every indecomposable object in ε is an atom. As a corollary we characterize the locally connected Grothendieck toposes whose exact completions are toposes. This result strengthens both the Lawvere-Schanuel characterization of Boolean presheaf toposes and Hofstra's characterization of the locally connected Grothendieck toposes whose exact completion is a Grothendieck topos. We also show that for any topological space X, the exact completion of Sh (X) is a topos if and only if X is discrete. The corollary in this case characterizes the Grothendieck toposes with enough points whose exact completions are toposes.Laboratorio de Investigación y Formación en Informática Avanzada2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf511-520http://sedici.unlp.edu.ar/handle/10915/83213enginfo:eu-repo/semantics/altIdentifier/issn/0022-4049info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2006.10.009info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T12:55:06Zoai:sedici.unlp.edu.ar:10915/83213Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 12:55:06.953SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Cocomplete toposes whose exact completions are toposes |
| title |
Cocomplete toposes whose exact completions are toposes |
| spellingShingle |
Cocomplete toposes whose exact completions are toposes Menni, Matías Ciencias Informáticas cocomplete topos Grothendieck toposes |
| title_short |
Cocomplete toposes whose exact completions are toposes |
| title_full |
Cocomplete toposes whose exact completions are toposes |
| title_fullStr |
Cocomplete toposes whose exact completions are toposes |
| title_full_unstemmed |
Cocomplete toposes whose exact completions are toposes |
| title_sort |
Cocomplete toposes whose exact completions are toposes |
| dc.creator.none.fl_str_mv |
Menni, Matías |
| author |
Menni, Matías |
| author_facet |
Menni, Matías |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas cocomplete topos Grothendieck toposes |
| topic |
Ciencias Informáticas cocomplete topos Grothendieck toposes |
| dc.description.none.fl_txt_mv |
Let ε be a cocomplete topos. We show that if the exact completion of ε is a topos then every indecomposable object in ε is an atom. As a corollary we characterize the locally connected Grothendieck toposes whose exact completions are toposes. This result strengthens both the Lawvere-Schanuel characterization of Boolean presheaf toposes and Hofstra's characterization of the locally connected Grothendieck toposes whose exact completion is a Grothendieck topos. We also show that for any topological space X, the exact completion of Sh (X) is a topos if and only if X is discrete. The corollary in this case characterizes the Grothendieck toposes with enough points whose exact completions are toposes. Laboratorio de Investigación y Formación en Informática Avanzada |
| description |
Let ε be a cocomplete topos. We show that if the exact completion of ε is a topos then every indecomposable object in ε is an atom. As a corollary we characterize the locally connected Grothendieck toposes whose exact completions are toposes. This result strengthens both the Lawvere-Schanuel characterization of Boolean presheaf toposes and Hofstra's characterization of the locally connected Grothendieck toposes whose exact completion is a Grothendieck topos. We also show that for any topological space X, the exact completion of Sh (X) is a topos if and only if X is discrete. The corollary in this case characterizes the Grothendieck toposes with enough points whose exact completions are toposes. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/83213 |
| url |
http://sedici.unlp.edu.ar/handle/10915/83213 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0022-4049 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2006.10.009 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 511-520 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1847978590211145728 |
| score |
13.087074 |