Higher-order correlations in common input shapes the output spiking activity of a neural population
- Autores
- Montangie, Lisandro; Montani, Fernando Fabián
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recent neurophysiological experiments suggest that populations of neurons use a computational scheme in which spike timing is regulated by common non-Gaussian inputs across neurons. The presence of beyond-pairwise correlations in the neuronal inputs and the spiking outputs following a non-Gaussian statistics elicits the need of developing a new theoretical framework taking into account the complexity of synchronous activity patterns. To this end, we quantify the amount of higher-order correlations in the common neuronal inputs and outputs of a population of neurons. We provide a novel formalism, of easy numerical implementation, that can capture the subtle changes of the inputs heterogeneities. Within our approach, correlations across neurons arise from -Gaussian inputs into threshold neurons and higher-order correlations in the spiking outputs activity are quantified by the parameter . We present an exhaustive analysis of how input statistics are transformed in this threshold process into output statistics, and we show under which conditions higher-order correlations can lead to either bigger or smaller number of synchronized spikes in the neural population outputs.
Instituto de Física de Líquidos y Sistemas Biológicos - Materia
-
Física
Higher-order correlations
Extended Central Limit Theorem
Large neural ensemble
Information geometry
Neuronal inputs
Spiking outputs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/160308
Ver los metadatos del registro completo
id |
SEDICI_540b523bd87ea47821dfd00c948a5157 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/160308 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Higher-order correlations in common input shapes the output spiking activity of a neural populationMontangie, LisandroMontani, Fernando FabiánFísicaHigher-order correlationsExtended Central Limit TheoremLarge neural ensembleInformation geometryNeuronal inputsSpiking outputsRecent neurophysiological experiments suggest that populations of neurons use a computational scheme in which spike timing is regulated by common non-Gaussian inputs across neurons. The presence of beyond-pairwise correlations in the neuronal inputs and the spiking outputs following a non-Gaussian statistics elicits the need of developing a new theoretical framework taking into account the complexity of synchronous activity patterns. To this end, we quantify the amount of higher-order correlations in the common neuronal inputs and outputs of a population of neurons. We provide a novel formalism, of easy numerical implementation, that can capture the subtle changes of the inputs heterogeneities. Within our approach, correlations across neurons arise from -Gaussian inputs into threshold neurons and higher-order correlations in the spiking outputs activity are quantified by the parameter . We present an exhaustive analysis of how input statistics are transformed in this threshold process into output statistics, and we show under which conditions higher-order correlations can lead to either bigger or smaller number of synchronized spikes in the neural population outputs.Instituto de Física de Líquidos y Sistemas Biológicos2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/160308enginfo:eu-repo/semantics/altIdentifier/issn/0378-4371info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2016.12.002info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:41:57Zoai:sedici.unlp.edu.ar:10915/160308Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:41:57.609SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Higher-order correlations in common input shapes the output spiking activity of a neural population |
title |
Higher-order correlations in common input shapes the output spiking activity of a neural population |
spellingShingle |
Higher-order correlations in common input shapes the output spiking activity of a neural population Montangie, Lisandro Física Higher-order correlations Extended Central Limit Theorem Large neural ensemble Information geometry Neuronal inputs Spiking outputs |
title_short |
Higher-order correlations in common input shapes the output spiking activity of a neural population |
title_full |
Higher-order correlations in common input shapes the output spiking activity of a neural population |
title_fullStr |
Higher-order correlations in common input shapes the output spiking activity of a neural population |
title_full_unstemmed |
Higher-order correlations in common input shapes the output spiking activity of a neural population |
title_sort |
Higher-order correlations in common input shapes the output spiking activity of a neural population |
dc.creator.none.fl_str_mv |
Montangie, Lisandro Montani, Fernando Fabián |
author |
Montangie, Lisandro |
author_facet |
Montangie, Lisandro Montani, Fernando Fabián |
author_role |
author |
author2 |
Montani, Fernando Fabián |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física Higher-order correlations Extended Central Limit Theorem Large neural ensemble Information geometry Neuronal inputs Spiking outputs |
topic |
Física Higher-order correlations Extended Central Limit Theorem Large neural ensemble Information geometry Neuronal inputs Spiking outputs |
dc.description.none.fl_txt_mv |
Recent neurophysiological experiments suggest that populations of neurons use a computational scheme in which spike timing is regulated by common non-Gaussian inputs across neurons. The presence of beyond-pairwise correlations in the neuronal inputs and the spiking outputs following a non-Gaussian statistics elicits the need of developing a new theoretical framework taking into account the complexity of synchronous activity patterns. To this end, we quantify the amount of higher-order correlations in the common neuronal inputs and outputs of a population of neurons. We provide a novel formalism, of easy numerical implementation, that can capture the subtle changes of the inputs heterogeneities. Within our approach, correlations across neurons arise from -Gaussian inputs into threshold neurons and higher-order correlations in the spiking outputs activity are quantified by the parameter . We present an exhaustive analysis of how input statistics are transformed in this threshold process into output statistics, and we show under which conditions higher-order correlations can lead to either bigger or smaller number of synchronized spikes in the neural population outputs. Instituto de Física de Líquidos y Sistemas Biológicos |
description |
Recent neurophysiological experiments suggest that populations of neurons use a computational scheme in which spike timing is regulated by common non-Gaussian inputs across neurons. The presence of beyond-pairwise correlations in the neuronal inputs and the spiking outputs following a non-Gaussian statistics elicits the need of developing a new theoretical framework taking into account the complexity of synchronous activity patterns. To this end, we quantify the amount of higher-order correlations in the common neuronal inputs and outputs of a population of neurons. We provide a novel formalism, of easy numerical implementation, that can capture the subtle changes of the inputs heterogeneities. Within our approach, correlations across neurons arise from -Gaussian inputs into threshold neurons and higher-order correlations in the spiking outputs activity are quantified by the parameter . We present an exhaustive analysis of how input statistics are transformed in this threshold process into output statistics, and we show under which conditions higher-order correlations can lead to either bigger or smaller number of synchronized spikes in the neural population outputs. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/160308 |
url |
http://sedici.unlp.edu.ar/handle/10915/160308 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0378-4371 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2016.12.002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616290547793920 |
score |
13.070432 |