Common inputs in subthreshold membrane potential: the role of quiescent states in neuronal activity
- Autores
- Montangie, Lisandro; Montani, Fernando Fabián
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Experiments in certain regions of the cerebral cortex suggest that the spiking activity of neuronalpopulations is regulated by common non-Gaussian inputs across neurons. We model these deviations from random walk processes with q-Gaussian distributions into simple threshold neurons, and investigate the scaling properties in large neural populations. We show that deviations from the Gaussian statistics provide a natural framework to regulate population statistics such as sparsity, entropy and specific heat. This type of description allows us to provide an adequate strategy to explain the information encoding in the case of low neuronal activity and its possible implications on information transmission.
Instituto de Física de Líquidos y Sistemas Biológicos - Materia
-
Física
Common inputs
Membrane potential
Quiescent states
Higher-order correlations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/100075
Ver los metadatos del registro completo
id |
SEDICI_101a9ce20f4f7ccbc0d3f264242639f0 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/100075 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Common inputs in subthreshold membrane potential: the role of quiescent states in neuronal activityMontangie, LisandroMontani, Fernando FabiánFísicaCommon inputsMembrane potentialQuiescent statesHigher-order correlationsExperiments in certain regions of the cerebral cortex suggest that the spiking activity of neuronalpopulations is regulated by common non-Gaussian inputs across neurons. We model these deviations from random walk processes with q-Gaussian distributions into simple threshold neurons, and investigate the scaling properties in large neural populations. We show that deviations from the Gaussian statistics provide a natural framework to regulate population statistics such as sparsity, entropy and specific heat. This type of description allows us to provide an adequate strategy to explain the information encoding in the case of low neuronal activity and its possible implications on information transmission.Instituto de Física de Líquidos y Sistemas Biológicos2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf60302-60308http://sedici.unlp.edu.ar/handle/10915/100075enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/90683info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.97.060302info:eu-repo/semantics/altIdentifier/issn/1539-3755info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.97.060302info:eu-repo/semantics/altIdentifier/hdl/11336/90683info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:20:35Zoai:sedici.unlp.edu.ar:10915/100075Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:20:36.042SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Common inputs in subthreshold membrane potential: the role of quiescent states in neuronal activity |
title |
Common inputs in subthreshold membrane potential: the role of quiescent states in neuronal activity |
spellingShingle |
Common inputs in subthreshold membrane potential: the role of quiescent states in neuronal activity Montangie, Lisandro Física Common inputs Membrane potential Quiescent states Higher-order correlations |
title_short |
Common inputs in subthreshold membrane potential: the role of quiescent states in neuronal activity |
title_full |
Common inputs in subthreshold membrane potential: the role of quiescent states in neuronal activity |
title_fullStr |
Common inputs in subthreshold membrane potential: the role of quiescent states in neuronal activity |
title_full_unstemmed |
Common inputs in subthreshold membrane potential: the role of quiescent states in neuronal activity |
title_sort |
Common inputs in subthreshold membrane potential: the role of quiescent states in neuronal activity |
dc.creator.none.fl_str_mv |
Montangie, Lisandro Montani, Fernando Fabián |
author |
Montangie, Lisandro |
author_facet |
Montangie, Lisandro Montani, Fernando Fabián |
author_role |
author |
author2 |
Montani, Fernando Fabián |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física Common inputs Membrane potential Quiescent states Higher-order correlations |
topic |
Física Common inputs Membrane potential Quiescent states Higher-order correlations |
dc.description.none.fl_txt_mv |
Experiments in certain regions of the cerebral cortex suggest that the spiking activity of neuronalpopulations is regulated by common non-Gaussian inputs across neurons. We model these deviations from random walk processes with q-Gaussian distributions into simple threshold neurons, and investigate the scaling properties in large neural populations. We show that deviations from the Gaussian statistics provide a natural framework to regulate population statistics such as sparsity, entropy and specific heat. This type of description allows us to provide an adequate strategy to explain the information encoding in the case of low neuronal activity and its possible implications on information transmission. Instituto de Física de Líquidos y Sistemas Biológicos |
description |
Experiments in certain regions of the cerebral cortex suggest that the spiking activity of neuronalpopulations is regulated by common non-Gaussian inputs across neurons. We model these deviations from random walk processes with q-Gaussian distributions into simple threshold neurons, and investigate the scaling properties in large neural populations. We show that deviations from the Gaussian statistics provide a natural framework to regulate population statistics such as sparsity, entropy and specific heat. This type of description allows us to provide an adequate strategy to explain the information encoding in the case of low neuronal activity and its possible implications on information transmission. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/100075 |
url |
http://sedici.unlp.edu.ar/handle/10915/100075 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/90683 info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.97.060302 info:eu-repo/semantics/altIdentifier/issn/1539-3755 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.97.060302 info:eu-repo/semantics/altIdentifier/hdl/11336/90683 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 60302-60308 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616080234905600 |
score |
13.070432 |