Higher-order correlations in common input shapes the output spiking activity of a neural population

Autores
Montangie, Lisandro; Montani, Fernando Fabián
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recent neurophysiological experiments suggest that populations of neurons use a computational scheme in which spike timing is regulated by common non-Gaussian inputs across neurons. The presence of beyond-pairwise correlations in the neuronal inputs and the spiking outputs following a non-Gaussian statistics elicits the need of developing a new theoretical framework taking into account the complexity of synchronous activity patterns. To this end, we quantify the amount of higher-order correlations in the common neuronal inputs and outputs of a population of neurons. We provide a novel formalism, of easy numerical implementation, that can capture the subtle changes of the inputs heterogeneities. Within our approach, correlations across neurons arise from q-Gaussian inputs into threshold neurons and higher-order correlations in the spiking outputs activity are quantified by the parameter q. We present an exhaustive analysis of how input statistics are transformed in this threshold process into output statistics, and we show under which conditions higher-order correlations can lead to either bigger or smaller number of synchronized spikes in the neural population outputs.
Fil: Montangie, Lisandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Materia
Extended Central Limit Theorem
Higher-Order Correlations
Information Geometry
Large Neural Ensemble
Neuronal Inputs
Spiking Outputs
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/47925

id CONICETDig_b86787370e8b7ea80d6040c690ed82a2
oai_identifier_str oai:ri.conicet.gov.ar:11336/47925
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Higher-order correlations in common input shapes the output spiking activity of a neural populationMontangie, LisandroMontani, Fernando FabiánExtended Central Limit TheoremHigher-Order CorrelationsInformation GeometryLarge Neural EnsembleNeuronal InputsSpiking Outputshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Recent neurophysiological experiments suggest that populations of neurons use a computational scheme in which spike timing is regulated by common non-Gaussian inputs across neurons. The presence of beyond-pairwise correlations in the neuronal inputs and the spiking outputs following a non-Gaussian statistics elicits the need of developing a new theoretical framework taking into account the complexity of synchronous activity patterns. To this end, we quantify the amount of higher-order correlations in the common neuronal inputs and outputs of a population of neurons. We provide a novel formalism, of easy numerical implementation, that can capture the subtle changes of the inputs heterogeneities. Within our approach, correlations across neurons arise from q-Gaussian inputs into threshold neurons and higher-order correlations in the spiking outputs activity are quantified by the parameter q. We present an exhaustive analysis of how input statistics are transformed in this threshold process into output statistics, and we show under which conditions higher-order correlations can lead to either bigger or smaller number of synchronized spikes in the neural population outputs.Fil: Montangie, Lisandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaElsevier Science2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47925Montangie, Lisandro; Montani, Fernando Fabián; Higher-order correlations in common input shapes the output spiking activity of a neural population; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 471; 4-2017; 845-8610378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2016.12.002info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437116309736info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:57Zoai:ri.conicet.gov.ar:11336/47925instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:57.545CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Higher-order correlations in common input shapes the output spiking activity of a neural population
title Higher-order correlations in common input shapes the output spiking activity of a neural population
spellingShingle Higher-order correlations in common input shapes the output spiking activity of a neural population
Montangie, Lisandro
Extended Central Limit Theorem
Higher-Order Correlations
Information Geometry
Large Neural Ensemble
Neuronal Inputs
Spiking Outputs
title_short Higher-order correlations in common input shapes the output spiking activity of a neural population
title_full Higher-order correlations in common input shapes the output spiking activity of a neural population
title_fullStr Higher-order correlations in common input shapes the output spiking activity of a neural population
title_full_unstemmed Higher-order correlations in common input shapes the output spiking activity of a neural population
title_sort Higher-order correlations in common input shapes the output spiking activity of a neural population
dc.creator.none.fl_str_mv Montangie, Lisandro
Montani, Fernando Fabián
author Montangie, Lisandro
author_facet Montangie, Lisandro
Montani, Fernando Fabián
author_role author
author2 Montani, Fernando Fabián
author2_role author
dc.subject.none.fl_str_mv Extended Central Limit Theorem
Higher-Order Correlations
Information Geometry
Large Neural Ensemble
Neuronal Inputs
Spiking Outputs
topic Extended Central Limit Theorem
Higher-Order Correlations
Information Geometry
Large Neural Ensemble
Neuronal Inputs
Spiking Outputs
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Recent neurophysiological experiments suggest that populations of neurons use a computational scheme in which spike timing is regulated by common non-Gaussian inputs across neurons. The presence of beyond-pairwise correlations in the neuronal inputs and the spiking outputs following a non-Gaussian statistics elicits the need of developing a new theoretical framework taking into account the complexity of synchronous activity patterns. To this end, we quantify the amount of higher-order correlations in the common neuronal inputs and outputs of a population of neurons. We provide a novel formalism, of easy numerical implementation, that can capture the subtle changes of the inputs heterogeneities. Within our approach, correlations across neurons arise from q-Gaussian inputs into threshold neurons and higher-order correlations in the spiking outputs activity are quantified by the parameter q. We present an exhaustive analysis of how input statistics are transformed in this threshold process into output statistics, and we show under which conditions higher-order correlations can lead to either bigger or smaller number of synchronized spikes in the neural population outputs.
Fil: Montangie, Lisandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
description Recent neurophysiological experiments suggest that populations of neurons use a computational scheme in which spike timing is regulated by common non-Gaussian inputs across neurons. The presence of beyond-pairwise correlations in the neuronal inputs and the spiking outputs following a non-Gaussian statistics elicits the need of developing a new theoretical framework taking into account the complexity of synchronous activity patterns. To this end, we quantify the amount of higher-order correlations in the common neuronal inputs and outputs of a population of neurons. We provide a novel formalism, of easy numerical implementation, that can capture the subtle changes of the inputs heterogeneities. Within our approach, correlations across neurons arise from q-Gaussian inputs into threshold neurons and higher-order correlations in the spiking outputs activity are quantified by the parameter q. We present an exhaustive analysis of how input statistics are transformed in this threshold process into output statistics, and we show under which conditions higher-order correlations can lead to either bigger or smaller number of synchronized spikes in the neural population outputs.
publishDate 2017
dc.date.none.fl_str_mv 2017-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/47925
Montangie, Lisandro; Montani, Fernando Fabián; Higher-order correlations in common input shapes the output spiking activity of a neural population; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 471; 4-2017; 845-861
0378-4371
CONICET Digital
CONICET
url http://hdl.handle.net/11336/47925
identifier_str_mv Montangie, Lisandro; Montani, Fernando Fabián; Higher-order correlations in common input shapes the output spiking activity of a neural population; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 471; 4-2017; 845-861
0378-4371
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2016.12.002
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437116309736
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613162667606016
score 13.070432