Eligiendo raíces para el Árbol de aproximación espacial
- Autores
- Gómez, Alejandro; Ludueña, Verónica; Reyes, Nora Susana
- Año de publicación
- 2007
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Muchas aplicaciones computacionales necesitan buscar información en una base de datos. En la actualidad el predominio de las bases de datos multimedia hace que la búsqueda por similitud o búsqueda por proximidad, es decir buscar elementos de la base de datos que sean similares a un elemento de consulta dado, se vuelva un concepto preponderante. El Árbol de Aproximación Espacial ha demostrado ser muy competitivo para la búsqueda por similitud en espacios métricos de media a alta dimensionalidad (espacios difíciles ) o para responder a consultas con baja selectividad. Sin embargo, para su construcción se elegía su raí z al azar y ello determinaba completamente el árbol tanto en su forma como en su desempe ño. Así , nuestro interés fue el de optimizar las búsquedas en dicha estructura tratando de que la raíz sea elegida de manera tal que re fleje alguna de las caracterí sticas propias del espacio métrico a indexar. Creemos que de esta forma permitimos que la estructura se adapte mejor a la dimensión intrí nseca del espacio métrico considerado, lo cual redunda en búsquedas más efi cientes.
Many computational applications need to search information in a database. At the present time the predominance of multimedia databases does that the similarity search or proximity search, that is to look for elements of the database that are similar to a given query element, becomes a preponderant concept. The Spatial Approximation Trees have shown to be competitive for similarity search in spaces with medium to high dimensionality ( dif cult spaces) or for queries with low selectivity. Nevertheless, for its construction its root was chosen randomly and it completely determines the tree, not only in its shape but also in its searching performance. Thus, our interest was to optimize searches in this data structure trying to choose the tree root in a way that the characteristics of indexed space can be re ected. We consider that, by this way, the data structure can adapt itself better to the dimension of the considered metric space, which results in more ef cient similarity searches.
IV Workshop de Ingeniería de Software y Base de Datos
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Informática
similarity search
metric spaces
Metrics
Database Administration
Information Search and Retrieval
búsqueda por similitud
espacios métricos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21874
Ver los metadatos del registro completo
id |
SEDICI_4f838b8c0a49f541b20b032946dd1eb0 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21874 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Eligiendo raíces para el Árbol de aproximación espacialGómez, AlejandroLudueña, VerónicaReyes, Nora SusanaCiencias InformáticasInformáticasimilarity searchmetric spacesMetricsDatabase AdministrationInformation Search and Retrievalbúsqueda por similitudespacios métricosMuchas aplicaciones computacionales necesitan buscar información en una base de datos. En la actualidad el predominio de las bases de datos multimedia hace que la búsqueda por similitud o búsqueda por proximidad, es decir buscar elementos de la base de datos que sean similares a un elemento de consulta dado, se vuelva un concepto preponderante. El Árbol de Aproximación Espacial ha demostrado ser muy competitivo para la búsqueda por similitud en espacios métricos de media a alta dimensionalidad (espacios difíciles ) o para responder a consultas con baja selectividad. Sin embargo, para su construcción se elegía su raí z al azar y ello determinaba completamente el árbol tanto en su forma como en su desempe ño. Así , nuestro interés fue el de optimizar las búsquedas en dicha estructura tratando de que la raíz sea elegida de manera tal que re fleje alguna de las caracterí sticas propias del espacio métrico a indexar. Creemos que de esta forma permitimos que la estructura se adapte mejor a la dimensión intrí nseca del espacio métrico considerado, lo cual redunda en búsquedas más efi cientes.Many computational applications need to search information in a database. At the present time the predominance of multimedia databases does that the similarity search or proximity search, that is to look for elements of the database that are similar to a given query element, becomes a preponderant concept. The Spatial Approximation Trees have shown to be competitive for similarity search in spaces with medium to high dimensionality ( dif cult spaces) or for queries with low selectivity. Nevertheless, for its construction its root was chosen randomly and it completely determines the tree, not only in its shape but also in its searching performance. Thus, our interest was to optimize searches in this data structure trying to choose the tree root in a way that the characteristics of indexed space can be re ected. We consider that, by this way, the data structure can adapt itself better to the dimension of the considered metric space, which results in more ef cient similarity searches.IV Workshop de Ingeniería de Software y Base de DatosRed de Universidades con Carreras en Informática (RedUNCI)2007info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf365-376http://sedici.unlp.edu.ar/handle/10915/21874spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:48Zoai:sedici.unlp.edu.ar:10915/21874Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:48.346SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Eligiendo raíces para el Árbol de aproximación espacial |
title |
Eligiendo raíces para el Árbol de aproximación espacial |
spellingShingle |
Eligiendo raíces para el Árbol de aproximación espacial Gómez, Alejandro Ciencias Informáticas Informática similarity search metric spaces Metrics Database Administration Information Search and Retrieval búsqueda por similitud espacios métricos |
title_short |
Eligiendo raíces para el Árbol de aproximación espacial |
title_full |
Eligiendo raíces para el Árbol de aproximación espacial |
title_fullStr |
Eligiendo raíces para el Árbol de aproximación espacial |
title_full_unstemmed |
Eligiendo raíces para el Árbol de aproximación espacial |
title_sort |
Eligiendo raíces para el Árbol de aproximación espacial |
dc.creator.none.fl_str_mv |
Gómez, Alejandro Ludueña, Verónica Reyes, Nora Susana |
author |
Gómez, Alejandro |
author_facet |
Gómez, Alejandro Ludueña, Verónica Reyes, Nora Susana |
author_role |
author |
author2 |
Ludueña, Verónica Reyes, Nora Susana |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Informática similarity search metric spaces Metrics Database Administration Information Search and Retrieval búsqueda por similitud espacios métricos |
topic |
Ciencias Informáticas Informática similarity search metric spaces Metrics Database Administration Information Search and Retrieval búsqueda por similitud espacios métricos |
dc.description.none.fl_txt_mv |
Muchas aplicaciones computacionales necesitan buscar información en una base de datos. En la actualidad el predominio de las bases de datos multimedia hace que la búsqueda por similitud o búsqueda por proximidad, es decir buscar elementos de la base de datos que sean similares a un elemento de consulta dado, se vuelva un concepto preponderante. El Árbol de Aproximación Espacial ha demostrado ser muy competitivo para la búsqueda por similitud en espacios métricos de media a alta dimensionalidad (espacios difíciles ) o para responder a consultas con baja selectividad. Sin embargo, para su construcción se elegía su raí z al azar y ello determinaba completamente el árbol tanto en su forma como en su desempe ño. Así , nuestro interés fue el de optimizar las búsquedas en dicha estructura tratando de que la raíz sea elegida de manera tal que re fleje alguna de las caracterí sticas propias del espacio métrico a indexar. Creemos que de esta forma permitimos que la estructura se adapte mejor a la dimensión intrí nseca del espacio métrico considerado, lo cual redunda en búsquedas más efi cientes. Many computational applications need to search information in a database. At the present time the predominance of multimedia databases does that the similarity search or proximity search, that is to look for elements of the database that are similar to a given query element, becomes a preponderant concept. The Spatial Approximation Trees have shown to be competitive for similarity search in spaces with medium to high dimensionality ( dif cult spaces) or for queries with low selectivity. Nevertheless, for its construction its root was chosen randomly and it completely determines the tree, not only in its shape but also in its searching performance. Thus, our interest was to optimize searches in this data structure trying to choose the tree root in a way that the characteristics of indexed space can be re ected. We consider that, by this way, the data structure can adapt itself better to the dimension of the considered metric space, which results in more ef cient similarity searches. IV Workshop de Ingeniería de Software y Base de Datos Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Muchas aplicaciones computacionales necesitan buscar información en una base de datos. En la actualidad el predominio de las bases de datos multimedia hace que la búsqueda por similitud o búsqueda por proximidad, es decir buscar elementos de la base de datos que sean similares a un elemento de consulta dado, se vuelva un concepto preponderante. El Árbol de Aproximación Espacial ha demostrado ser muy competitivo para la búsqueda por similitud en espacios métricos de media a alta dimensionalidad (espacios difíciles ) o para responder a consultas con baja selectividad. Sin embargo, para su construcción se elegía su raí z al azar y ello determinaba completamente el árbol tanto en su forma como en su desempe ño. Así , nuestro interés fue el de optimizar las búsquedas en dicha estructura tratando de que la raíz sea elegida de manera tal que re fleje alguna de las caracterí sticas propias del espacio métrico a indexar. Creemos que de esta forma permitimos que la estructura se adapte mejor a la dimensión intrí nseca del espacio métrico considerado, lo cual redunda en búsquedas más efi cientes. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21874 |
url |
http://sedici.unlp.edu.ar/handle/10915/21874 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 365-376 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615806428643328 |
score |
13.070432 |