Distal Dynamic Spatial Approximation Forest

Autores
Chávez, Edgar; Di Genaro, María; Reyes, Nora Susana; Roggero, Patricia
Año de publicación
2016
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Querying large datasets by proximity, using a distance under the metric space model, has a large number of applications in multimedia, pattern recognition, statistics, etc. There is an ever growing number of indexes and algorithms for proximity querying, however there is only a handful of indexes able to perform well without user intervention to select parameters. One of such indexes is the Distal Spatial Approximation Tree (DiSAT) which is parameter-less and has demonstrated to be very efficient outperforming other approaches. The main drawback of the DiSAT is its static nature, that is, once built, it is difficult to add or to remove new elements. This drawback prevents the use of the DiSAT for many interesting applications. In this paper we overcome this weakness. We use a standard technique, the Bentley and Saxe algorithm, to produce a new index which is dynamic while retaining the simplicity and appeal for practitioners of the DiSAT. In order to improve the DiSAF performance, we do not attempt to directly apply the Bentley and Saxe technique, but we enhance its application by taking advantage of our deep knowledge of the DiSAT behavior.
XIII Workshop Bases de datos y Minería de Datos (WBDMD).
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
similarity search
dynamism
metric spaces
non-conventional databases
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/56766

id SEDICI_6ae907347156f0fca9289b7ec9b95e9c
oai_identifier_str oai:sedici.unlp.edu.ar:10915/56766
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Distal Dynamic Spatial Approximation ForestChávez, EdgarDi Genaro, MaríaReyes, Nora SusanaRoggero, PatriciaCiencias Informáticassimilarity searchdynamismmetric spacesnon-conventional databasesQuerying large datasets by proximity, using a distance under the metric space model, has a large number of applications in multimedia, pattern recognition, statistics, etc. There is an ever growing number of indexes and algorithms for proximity querying, however there is only a handful of indexes able to perform well without user intervention to select parameters. One of such indexes is the Distal Spatial Approximation Tree (DiSAT) which is parameter-less and has demonstrated to be very efficient outperforming other approaches. The main drawback of the DiSAT is its static nature, that is, once built, it is difficult to add or to remove new elements. This drawback prevents the use of the DiSAT for many interesting applications. In this paper we overcome this weakness. We use a standard technique, the Bentley and Saxe algorithm, to produce a new index which is dynamic while retaining the simplicity and appeal for practitioners of the DiSAT. In order to improve the DiSAF performance, we do not attempt to directly apply the Bentley and Saxe technique, but we enhance its application by taking advantage of our deep knowledge of the DiSAT behavior.XIII Workshop Bases de datos y Minería de Datos (WBDMD).Red de Universidades con Carreras en Informática (RedUNCI)2016-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf804-813http://sedici.unlp.edu.ar/handle/10915/56766enginfo:eu-repo/semantics/reference/hdl/10915/55718info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:49:33Zoai:sedici.unlp.edu.ar:10915/56766Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:49:34.048SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Distal Dynamic Spatial Approximation Forest
title Distal Dynamic Spatial Approximation Forest
spellingShingle Distal Dynamic Spatial Approximation Forest
Chávez, Edgar
Ciencias Informáticas
similarity search
dynamism
metric spaces
non-conventional databases
title_short Distal Dynamic Spatial Approximation Forest
title_full Distal Dynamic Spatial Approximation Forest
title_fullStr Distal Dynamic Spatial Approximation Forest
title_full_unstemmed Distal Dynamic Spatial Approximation Forest
title_sort Distal Dynamic Spatial Approximation Forest
dc.creator.none.fl_str_mv Chávez, Edgar
Di Genaro, María
Reyes, Nora Susana
Roggero, Patricia
author Chávez, Edgar
author_facet Chávez, Edgar
Di Genaro, María
Reyes, Nora Susana
Roggero, Patricia
author_role author
author2 Di Genaro, María
Reyes, Nora Susana
Roggero, Patricia
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
similarity search
dynamism
metric spaces
non-conventional databases
topic Ciencias Informáticas
similarity search
dynamism
metric spaces
non-conventional databases
dc.description.none.fl_txt_mv Querying large datasets by proximity, using a distance under the metric space model, has a large number of applications in multimedia, pattern recognition, statistics, etc. There is an ever growing number of indexes and algorithms for proximity querying, however there is only a handful of indexes able to perform well without user intervention to select parameters. One of such indexes is the Distal Spatial Approximation Tree (DiSAT) which is parameter-less and has demonstrated to be very efficient outperforming other approaches. The main drawback of the DiSAT is its static nature, that is, once built, it is difficult to add or to remove new elements. This drawback prevents the use of the DiSAT for many interesting applications. In this paper we overcome this weakness. We use a standard technique, the Bentley and Saxe algorithm, to produce a new index which is dynamic while retaining the simplicity and appeal for practitioners of the DiSAT. In order to improve the DiSAF performance, we do not attempt to directly apply the Bentley and Saxe technique, but we enhance its application by taking advantage of our deep knowledge of the DiSAT behavior.
XIII Workshop Bases de datos y Minería de Datos (WBDMD).
Red de Universidades con Carreras en Informática (RedUNCI)
description Querying large datasets by proximity, using a distance under the metric space model, has a large number of applications in multimedia, pattern recognition, statistics, etc. There is an ever growing number of indexes and algorithms for proximity querying, however there is only a handful of indexes able to perform well without user intervention to select parameters. One of such indexes is the Distal Spatial Approximation Tree (DiSAT) which is parameter-less and has demonstrated to be very efficient outperforming other approaches. The main drawback of the DiSAT is its static nature, that is, once built, it is difficult to add or to remove new elements. This drawback prevents the use of the DiSAT for many interesting applications. In this paper we overcome this weakness. We use a standard technique, the Bentley and Saxe algorithm, to produce a new index which is dynamic while retaining the simplicity and appeal for practitioners of the DiSAT. In order to improve the DiSAF performance, we do not attempt to directly apply the Bentley and Saxe technique, but we enhance its application by taking advantage of our deep knowledge of the DiSAT behavior.
publishDate 2016
dc.date.none.fl_str_mv 2016-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/56766
url http://sedici.unlp.edu.ar/handle/10915/56766
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/reference/hdl/10915/55718
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
804-813
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1843532271764635648
score 13.001348