Detección automática, clasificación y reconocimiento de escorpiones mediante técnicas de Aprendizaje Profundo

Autores
Giambelluca, Francisco Luis
Año de publicación
2022
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Cappelletti, Marcelo Angel
Descripción
La detección e identificación temprana de los escorpiones es esencial debido a la peligrosidad de estos arácnidos que ponen en riesgo la salud de la población, en particular, de los sectores más vulnerables al veneno de un escorpión, como son las personas hipertensas, cardíacas o diabéticas, pero también los niños y los ancianos. A su vez, la detección y clasificación de escorpiones puede ser útil con fines de investigación biológica para estudiar las diferentes variedades de géneros y especies. En este trabajo, con el propósito de brindar herramientas de prevención alternativas, se desarrollaron novedosos sistemas automáticos y en tiempo real para detectar y clasificar escorpiones, utilizando heurísticas de visión artificial y Aprendizaje Profundo, basados en las características de la forma y la propiedad de fluorescencia de los escorpiones cuando son expuesto a luz ultravioleta. En particular, se han investigado las tres especies de escorpiones que se encuentran en la ciudad de La Plata: Bothriurus bonariensis (sin importancia sanitaria), Tityus carrilloi y Tityus confluens (ambas de importancia sanitaria). Durante este trabajo se llevaron a cabo comparaciones entre diferentes modelos basados en Aprendizaje Profundo utilizados para detectar e identificar escorpiones, ya sea por género peligroso o no peligroso, como para determinar su especie dentro de un mismo género. Los resultados satisfactorios obtenidos indican que los sistemas desarrollados pueden, de forma temprana, precisa, no invasiva y segura, detectar y clasificar escorpiones, incluso dentro de un ambiente no controlado, es decir, cuando el escorpión se encuentra cerca de otros objetos que podrían dificultar su detección. Los sistemas de detección y clasificación desarrollados en este trabajo se implementaron como una aplicación móvil, con la ventaja de la portabilidad y la facilidad de acceso a la población, que puede ser utilizada como una herramienta de prevención eficaz para minimizar las picaduras de escorpiones y ayudar a reducir el daño que pueden ocasionar a las poblaciones expuestas a estos arácnidos. Además, estos sistemas son fácilmente escalables a otros géneros y especies de escorpiones para ampliar la región donde se puedan utilizar estas aplicaciones.
Doctor en Ingeniería
Universidad Nacional de La Plata
Facultad de Ingeniería
Materia
Ingeniería Electrónica
Aprendizaje profundo
Escorpiones
Detección
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/139741

id SEDICI_4aea9218a2f091c593a938b92030e742
oai_identifier_str oai:sedici.unlp.edu.ar:10915/139741
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Detección automática, clasificación y reconocimiento de escorpiones mediante técnicas de Aprendizaje ProfundoGiambelluca, Francisco LuisIngeniería ElectrónicaAprendizaje profundoEscorpionesDetecciónLa detección e identificación temprana de los escorpiones es esencial debido a la peligrosidad de estos arácnidos que ponen en riesgo la salud de la población, en particular, de los sectores más vulnerables al veneno de un escorpión, como son las personas hipertensas, cardíacas o diabéticas, pero también los niños y los ancianos. A su vez, la detección y clasificación de escorpiones puede ser útil con fines de investigación biológica para estudiar las diferentes variedades de géneros y especies. En este trabajo, con el propósito de brindar herramientas de prevención alternativas, se desarrollaron novedosos sistemas automáticos y en tiempo real para detectar y clasificar escorpiones, utilizando heurísticas de visión artificial y Aprendizaje Profundo, basados en las características de la forma y la propiedad de fluorescencia de los escorpiones cuando son expuesto a luz ultravioleta. En particular, se han investigado las tres especies de escorpiones que se encuentran en la ciudad de La Plata: Bothriurus bonariensis (sin importancia sanitaria), Tityus carrilloi y Tityus confluens (ambas de importancia sanitaria). Durante este trabajo se llevaron a cabo comparaciones entre diferentes modelos basados en Aprendizaje Profundo utilizados para detectar e identificar escorpiones, ya sea por género peligroso o no peligroso, como para determinar su especie dentro de un mismo género. Los resultados satisfactorios obtenidos indican que los sistemas desarrollados pueden, de forma temprana, precisa, no invasiva y segura, detectar y clasificar escorpiones, incluso dentro de un ambiente no controlado, es decir, cuando el escorpión se encuentra cerca de otros objetos que podrían dificultar su detección. Los sistemas de detección y clasificación desarrollados en este trabajo se implementaron como una aplicación móvil, con la ventaja de la portabilidad y la facilidad de acceso a la población, que puede ser utilizada como una herramienta de prevención eficaz para minimizar las picaduras de escorpiones y ayudar a reducir el daño que pueden ocasionar a las poblaciones expuestas a estos arácnidos. Además, estos sistemas son fácilmente escalables a otros géneros y especies de escorpiones para ampliar la región donde se puedan utilizar estas aplicaciones.Doctor en IngenieríaUniversidad Nacional de La PlataFacultad de IngenieríaCappelletti, Marcelo Angel2022-07-15info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/139741https://doi.org/10.35537/10915/139741spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:07:32Zoai:sedici.unlp.edu.ar:10915/139741Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:07:33.038SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Detección automática, clasificación y reconocimiento de escorpiones mediante técnicas de Aprendizaje Profundo
title Detección automática, clasificación y reconocimiento de escorpiones mediante técnicas de Aprendizaje Profundo
spellingShingle Detección automática, clasificación y reconocimiento de escorpiones mediante técnicas de Aprendizaje Profundo
Giambelluca, Francisco Luis
Ingeniería Electrónica
Aprendizaje profundo
Escorpiones
Detección
title_short Detección automática, clasificación y reconocimiento de escorpiones mediante técnicas de Aprendizaje Profundo
title_full Detección automática, clasificación y reconocimiento de escorpiones mediante técnicas de Aprendizaje Profundo
title_fullStr Detección automática, clasificación y reconocimiento de escorpiones mediante técnicas de Aprendizaje Profundo
title_full_unstemmed Detección automática, clasificación y reconocimiento de escorpiones mediante técnicas de Aprendizaje Profundo
title_sort Detección automática, clasificación y reconocimiento de escorpiones mediante técnicas de Aprendizaje Profundo
dc.creator.none.fl_str_mv Giambelluca, Francisco Luis
author Giambelluca, Francisco Luis
author_facet Giambelluca, Francisco Luis
author_role author
dc.contributor.none.fl_str_mv Cappelletti, Marcelo Angel
dc.subject.none.fl_str_mv Ingeniería Electrónica
Aprendizaje profundo
Escorpiones
Detección
topic Ingeniería Electrónica
Aprendizaje profundo
Escorpiones
Detección
dc.description.none.fl_txt_mv La detección e identificación temprana de los escorpiones es esencial debido a la peligrosidad de estos arácnidos que ponen en riesgo la salud de la población, en particular, de los sectores más vulnerables al veneno de un escorpión, como son las personas hipertensas, cardíacas o diabéticas, pero también los niños y los ancianos. A su vez, la detección y clasificación de escorpiones puede ser útil con fines de investigación biológica para estudiar las diferentes variedades de géneros y especies. En este trabajo, con el propósito de brindar herramientas de prevención alternativas, se desarrollaron novedosos sistemas automáticos y en tiempo real para detectar y clasificar escorpiones, utilizando heurísticas de visión artificial y Aprendizaje Profundo, basados en las características de la forma y la propiedad de fluorescencia de los escorpiones cuando son expuesto a luz ultravioleta. En particular, se han investigado las tres especies de escorpiones que se encuentran en la ciudad de La Plata: Bothriurus bonariensis (sin importancia sanitaria), Tityus carrilloi y Tityus confluens (ambas de importancia sanitaria). Durante este trabajo se llevaron a cabo comparaciones entre diferentes modelos basados en Aprendizaje Profundo utilizados para detectar e identificar escorpiones, ya sea por género peligroso o no peligroso, como para determinar su especie dentro de un mismo género. Los resultados satisfactorios obtenidos indican que los sistemas desarrollados pueden, de forma temprana, precisa, no invasiva y segura, detectar y clasificar escorpiones, incluso dentro de un ambiente no controlado, es decir, cuando el escorpión se encuentra cerca de otros objetos que podrían dificultar su detección. Los sistemas de detección y clasificación desarrollados en este trabajo se implementaron como una aplicación móvil, con la ventaja de la portabilidad y la facilidad de acceso a la población, que puede ser utilizada como una herramienta de prevención eficaz para minimizar las picaduras de escorpiones y ayudar a reducir el daño que pueden ocasionar a las poblaciones expuestas a estos arácnidos. Además, estos sistemas son fácilmente escalables a otros géneros y especies de escorpiones para ampliar la región donde se puedan utilizar estas aplicaciones.
Doctor en Ingeniería
Universidad Nacional de La Plata
Facultad de Ingeniería
description La detección e identificación temprana de los escorpiones es esencial debido a la peligrosidad de estos arácnidos que ponen en riesgo la salud de la población, en particular, de los sectores más vulnerables al veneno de un escorpión, como son las personas hipertensas, cardíacas o diabéticas, pero también los niños y los ancianos. A su vez, la detección y clasificación de escorpiones puede ser útil con fines de investigación biológica para estudiar las diferentes variedades de géneros y especies. En este trabajo, con el propósito de brindar herramientas de prevención alternativas, se desarrollaron novedosos sistemas automáticos y en tiempo real para detectar y clasificar escorpiones, utilizando heurísticas de visión artificial y Aprendizaje Profundo, basados en las características de la forma y la propiedad de fluorescencia de los escorpiones cuando son expuesto a luz ultravioleta. En particular, se han investigado las tres especies de escorpiones que se encuentran en la ciudad de La Plata: Bothriurus bonariensis (sin importancia sanitaria), Tityus carrilloi y Tityus confluens (ambas de importancia sanitaria). Durante este trabajo se llevaron a cabo comparaciones entre diferentes modelos basados en Aprendizaje Profundo utilizados para detectar e identificar escorpiones, ya sea por género peligroso o no peligroso, como para determinar su especie dentro de un mismo género. Los resultados satisfactorios obtenidos indican que los sistemas desarrollados pueden, de forma temprana, precisa, no invasiva y segura, detectar y clasificar escorpiones, incluso dentro de un ambiente no controlado, es decir, cuando el escorpión se encuentra cerca de otros objetos que podrían dificultar su detección. Los sistemas de detección y clasificación desarrollados en este trabajo se implementaron como una aplicación móvil, con la ventaja de la portabilidad y la facilidad de acceso a la población, que puede ser utilizada como una herramienta de prevención eficaz para minimizar las picaduras de escorpiones y ayudar a reducir el daño que pueden ocasionar a las poblaciones expuestas a estos arácnidos. Además, estos sistemas son fácilmente escalables a otros géneros y especies de escorpiones para ampliar la región donde se puedan utilizar estas aplicaciones.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-15
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/139741
https://doi.org/10.35537/10915/139741
url http://sedici.unlp.edu.ar/handle/10915/139741
https://doi.org/10.35537/10915/139741
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260578055225344
score 13.13397