Long-Term Forecasting of Strong Earthquakes in North America, South America, Japan, Southern China and Northern India With Machine Learning

Autores
Velasco Herrera, Victor Manuel; Rossello, Eduardo Antonio; Orgeira, Maria Julia; Arioni, Lucas; Soon, Willie; Velasco, Graciela; Rosique de la Cruz, Laura; Zúñiga, Emmanuel; Vera, Carlos
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Strong earthquakes (magnitude ≥7) occur worldwide affecting different cities and countries while causing great human, ecological and economic losses. The ability to forecast strong earthquakes on the long-term basis is essential to minimize the risks and vulnerabilities of people living in highly active seismic areas. We have studied seismic activities in North America, South America, Japan, Southern China and Northern India in search for patterns in strong earthquakes on each of these active seismic zones between 1900 and 2021 with the powerful mathematical tool of wavelet transform. We found that the primary seismic activity patterns for M ≥ 7 earthquakes are 55, 3.7, 7.7, and 8.6 years, for seismic zones of the southwestern United States and northern Mexico, southwestern Mexico, South American, and Southern China-Northern India, respectively. In the case of Japan, the most important seismic pattern for earthquakes with magnitude 7 ≤ M (Formula presented.) 8 is 4.1 years and for strong earthquakes with M ≥ 8, it is 40 years. Every seismic pattern obtained clusters the earthquakes in historical intervals/episodes with and without strong earthquakes in the individually analyzed seismic zones. We want to clarify that the intervals where no strong earthquakes do not imply the total absence of seismic activity because earthquakes can occur with lesser magnitude within this same interval. From the information and pattern we obtained from the wavelet analyses, we created a probabilistic, long-term earthquake prediction model for each seismic zone using the Bayesian Machine Learning method. We propose that the periods of occurrence of earthquakes in each seismic zone analyzed could be interpreted as the period in which the stress builds up on different planes of a fault, until this energy releases through the rupture along faults and fractures near the plate tectonic boundaries. Then a series of earthquakes can occur along the fault until the stress subsides and a new cycle begins. Our machine learning models predict a new period of strong earthquakes between 2040 ± 5 and 2057 ± 5, 2024 ± 1 and 2026 ± 1, 2026 ± 2 and 2031 ± 2, 2024 ± 2 and 2029 ± 2, and 2022 ± 1 and 2028 ± 2 for the five active seismic zones of United States, Mexico, South America, Japan, and Southern China and Northern India, respectively. In additon, our methodology can be applied in areas where moderate earthquakes occur, as for the case of the Parkfield section of the San Andreas fault (California, United States). Our methodology explains why a moderate earthquake could never occur in 1988 ± 5 as proposed and why the long-awaited Parkfield earthquake event occurred in 2004. Furthermore, our model predicts that possible seismic events may occur between 2019 and 2031, with a high probability of earthquake events at Parkfield around 2025 ± 2 years.
Fil: Velasco Herrera, Victor Manuel. Universidad Nacional Autónoma de México; México
Fil: Rossello, Eduardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina
Fil: Orgeira, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina
Fil: Arioni, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina
Fil: Soon, Willie. Center for Environmental Research and Earth Sciences; Estados Unidos
Fil: Velasco, Graciela. Universidad Nacional Autónoma de México; México
Fil: Rosique de la Cruz, Laura. Universidad Nacional Autónoma de México; México
Fil: Zúñiga, Emmanuel. Universidad Nacional Autónoma de México; México
Fil: Vera, Carlos. Universidad Nacional Autónoma de México; México
Materia
ARTIFICIAL INTELLIGENCE
MACHINE LEARNING
PROBABILISTIC EARTHQUAKE PREDICTION
STRESS
WAVELET
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/202832

id CONICETDig_a2fa3339c2051e49188d7458d5186c85
oai_identifier_str oai:ri.conicet.gov.ar:11336/202832
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Long-Term Forecasting of Strong Earthquakes in North America, South America, Japan, Southern China and Northern India With Machine LearningVelasco Herrera, Victor ManuelRossello, Eduardo AntonioOrgeira, Maria JuliaArioni, LucasSoon, WillieVelasco, GracielaRosique de la Cruz, LauraZúñiga, EmmanuelVera, CarlosARTIFICIAL INTELLIGENCEMACHINE LEARNINGPROBABILISTIC EARTHQUAKE PREDICTIONSTRESSWAVELEThttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1Strong earthquakes (magnitude ≥7) occur worldwide affecting different cities and countries while causing great human, ecological and economic losses. The ability to forecast strong earthquakes on the long-term basis is essential to minimize the risks and vulnerabilities of people living in highly active seismic areas. We have studied seismic activities in North America, South America, Japan, Southern China and Northern India in search for patterns in strong earthquakes on each of these active seismic zones between 1900 and 2021 with the powerful mathematical tool of wavelet transform. We found that the primary seismic activity patterns for M ≥ 7 earthquakes are 55, 3.7, 7.7, and 8.6 years, for seismic zones of the southwestern United States and northern Mexico, southwestern Mexico, South American, and Southern China-Northern India, respectively. In the case of Japan, the most important seismic pattern for earthquakes with magnitude 7 ≤ M (Formula presented.) 8 is 4.1 years and for strong earthquakes with M ≥ 8, it is 40 years. Every seismic pattern obtained clusters the earthquakes in historical intervals/episodes with and without strong earthquakes in the individually analyzed seismic zones. We want to clarify that the intervals where no strong earthquakes do not imply the total absence of seismic activity because earthquakes can occur with lesser magnitude within this same interval. From the information and pattern we obtained from the wavelet analyses, we created a probabilistic, long-term earthquake prediction model for each seismic zone using the Bayesian Machine Learning method. We propose that the periods of occurrence of earthquakes in each seismic zone analyzed could be interpreted as the period in which the stress builds up on different planes of a fault, until this energy releases through the rupture along faults and fractures near the plate tectonic boundaries. Then a series of earthquakes can occur along the fault until the stress subsides and a new cycle begins. Our machine learning models predict a new period of strong earthquakes between 2040 ± 5 and 2057 ± 5, 2024 ± 1 and 2026 ± 1, 2026 ± 2 and 2031 ± 2, 2024 ± 2 and 2029 ± 2, and 2022 ± 1 and 2028 ± 2 for the five active seismic zones of United States, Mexico, South America, Japan, and Southern China and Northern India, respectively. In additon, our methodology can be applied in areas where moderate earthquakes occur, as for the case of the Parkfield section of the San Andreas fault (California, United States). Our methodology explains why a moderate earthquake could never occur in 1988 ± 5 as proposed and why the long-awaited Parkfield earthquake event occurred in 2004. Furthermore, our model predicts that possible seismic events may occur between 2019 and 2031, with a high probability of earthquake events at Parkfield around 2025 ± 2 years.Fil: Velasco Herrera, Victor Manuel. Universidad Nacional Autónoma de México; MéxicoFil: Rossello, Eduardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Orgeira, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Arioni, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Soon, Willie. Center for Environmental Research and Earth Sciences; Estados UnidosFil: Velasco, Graciela. Universidad Nacional Autónoma de México; MéxicoFil: Rosique de la Cruz, Laura. Universidad Nacional Autónoma de México; MéxicoFil: Zúñiga, Emmanuel. Universidad Nacional Autónoma de México; MéxicoFil: Vera, Carlos. Universidad Nacional Autónoma de México; MéxicoFrontiers Media2022-06-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/202832Velasco Herrera, Victor Manuel; Rossello, Eduardo Antonio; Orgeira, Maria Julia; Arioni, Lucas; Soon, Willie; et al.; Long-Term Forecasting of Strong Earthquakes in North America, South America, Japan, Southern China and Northern India With Machine Learning; Frontiers Media; Frontiers in Earth Science; 10; 22-6-2022; 1-252296-6463CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3389/feart.2022.905792info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/feart.2022.905792/fullinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:29Zoai:ri.conicet.gov.ar:11336/202832instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:29.567CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Long-Term Forecasting of Strong Earthquakes in North America, South America, Japan, Southern China and Northern India With Machine Learning
title Long-Term Forecasting of Strong Earthquakes in North America, South America, Japan, Southern China and Northern India With Machine Learning
spellingShingle Long-Term Forecasting of Strong Earthquakes in North America, South America, Japan, Southern China and Northern India With Machine Learning
Velasco Herrera, Victor Manuel
ARTIFICIAL INTELLIGENCE
MACHINE LEARNING
PROBABILISTIC EARTHQUAKE PREDICTION
STRESS
WAVELET
title_short Long-Term Forecasting of Strong Earthquakes in North America, South America, Japan, Southern China and Northern India With Machine Learning
title_full Long-Term Forecasting of Strong Earthquakes in North America, South America, Japan, Southern China and Northern India With Machine Learning
title_fullStr Long-Term Forecasting of Strong Earthquakes in North America, South America, Japan, Southern China and Northern India With Machine Learning
title_full_unstemmed Long-Term Forecasting of Strong Earthquakes in North America, South America, Japan, Southern China and Northern India With Machine Learning
title_sort Long-Term Forecasting of Strong Earthquakes in North America, South America, Japan, Southern China and Northern India With Machine Learning
dc.creator.none.fl_str_mv Velasco Herrera, Victor Manuel
Rossello, Eduardo Antonio
Orgeira, Maria Julia
Arioni, Lucas
Soon, Willie
Velasco, Graciela
Rosique de la Cruz, Laura
Zúñiga, Emmanuel
Vera, Carlos
author Velasco Herrera, Victor Manuel
author_facet Velasco Herrera, Victor Manuel
Rossello, Eduardo Antonio
Orgeira, Maria Julia
Arioni, Lucas
Soon, Willie
Velasco, Graciela
Rosique de la Cruz, Laura
Zúñiga, Emmanuel
Vera, Carlos
author_role author
author2 Rossello, Eduardo Antonio
Orgeira, Maria Julia
Arioni, Lucas
Soon, Willie
Velasco, Graciela
Rosique de la Cruz, Laura
Zúñiga, Emmanuel
Vera, Carlos
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv ARTIFICIAL INTELLIGENCE
MACHINE LEARNING
PROBABILISTIC EARTHQUAKE PREDICTION
STRESS
WAVELET
topic ARTIFICIAL INTELLIGENCE
MACHINE LEARNING
PROBABILISTIC EARTHQUAKE PREDICTION
STRESS
WAVELET
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.7
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Strong earthquakes (magnitude ≥7) occur worldwide affecting different cities and countries while causing great human, ecological and economic losses. The ability to forecast strong earthquakes on the long-term basis is essential to minimize the risks and vulnerabilities of people living in highly active seismic areas. We have studied seismic activities in North America, South America, Japan, Southern China and Northern India in search for patterns in strong earthquakes on each of these active seismic zones between 1900 and 2021 with the powerful mathematical tool of wavelet transform. We found that the primary seismic activity patterns for M ≥ 7 earthquakes are 55, 3.7, 7.7, and 8.6 years, for seismic zones of the southwestern United States and northern Mexico, southwestern Mexico, South American, and Southern China-Northern India, respectively. In the case of Japan, the most important seismic pattern for earthquakes with magnitude 7 ≤ M (Formula presented.) 8 is 4.1 years and for strong earthquakes with M ≥ 8, it is 40 years. Every seismic pattern obtained clusters the earthquakes in historical intervals/episodes with and without strong earthquakes in the individually analyzed seismic zones. We want to clarify that the intervals where no strong earthquakes do not imply the total absence of seismic activity because earthquakes can occur with lesser magnitude within this same interval. From the information and pattern we obtained from the wavelet analyses, we created a probabilistic, long-term earthquake prediction model for each seismic zone using the Bayesian Machine Learning method. We propose that the periods of occurrence of earthquakes in each seismic zone analyzed could be interpreted as the period in which the stress builds up on different planes of a fault, until this energy releases through the rupture along faults and fractures near the plate tectonic boundaries. Then a series of earthquakes can occur along the fault until the stress subsides and a new cycle begins. Our machine learning models predict a new period of strong earthquakes between 2040 ± 5 and 2057 ± 5, 2024 ± 1 and 2026 ± 1, 2026 ± 2 and 2031 ± 2, 2024 ± 2 and 2029 ± 2, and 2022 ± 1 and 2028 ± 2 for the five active seismic zones of United States, Mexico, South America, Japan, and Southern China and Northern India, respectively. In additon, our methodology can be applied in areas where moderate earthquakes occur, as for the case of the Parkfield section of the San Andreas fault (California, United States). Our methodology explains why a moderate earthquake could never occur in 1988 ± 5 as proposed and why the long-awaited Parkfield earthquake event occurred in 2004. Furthermore, our model predicts that possible seismic events may occur between 2019 and 2031, with a high probability of earthquake events at Parkfield around 2025 ± 2 years.
Fil: Velasco Herrera, Victor Manuel. Universidad Nacional Autónoma de México; México
Fil: Rossello, Eduardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina
Fil: Orgeira, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina
Fil: Arioni, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina
Fil: Soon, Willie. Center for Environmental Research and Earth Sciences; Estados Unidos
Fil: Velasco, Graciela. Universidad Nacional Autónoma de México; México
Fil: Rosique de la Cruz, Laura. Universidad Nacional Autónoma de México; México
Fil: Zúñiga, Emmanuel. Universidad Nacional Autónoma de México; México
Fil: Vera, Carlos. Universidad Nacional Autónoma de México; México
description Strong earthquakes (magnitude ≥7) occur worldwide affecting different cities and countries while causing great human, ecological and economic losses. The ability to forecast strong earthquakes on the long-term basis is essential to minimize the risks and vulnerabilities of people living in highly active seismic areas. We have studied seismic activities in North America, South America, Japan, Southern China and Northern India in search for patterns in strong earthquakes on each of these active seismic zones between 1900 and 2021 with the powerful mathematical tool of wavelet transform. We found that the primary seismic activity patterns for M ≥ 7 earthquakes are 55, 3.7, 7.7, and 8.6 years, for seismic zones of the southwestern United States and northern Mexico, southwestern Mexico, South American, and Southern China-Northern India, respectively. In the case of Japan, the most important seismic pattern for earthquakes with magnitude 7 ≤ M (Formula presented.) 8 is 4.1 years and for strong earthquakes with M ≥ 8, it is 40 years. Every seismic pattern obtained clusters the earthquakes in historical intervals/episodes with and without strong earthquakes in the individually analyzed seismic zones. We want to clarify that the intervals where no strong earthquakes do not imply the total absence of seismic activity because earthquakes can occur with lesser magnitude within this same interval. From the information and pattern we obtained from the wavelet analyses, we created a probabilistic, long-term earthquake prediction model for each seismic zone using the Bayesian Machine Learning method. We propose that the periods of occurrence of earthquakes in each seismic zone analyzed could be interpreted as the period in which the stress builds up on different planes of a fault, until this energy releases through the rupture along faults and fractures near the plate tectonic boundaries. Then a series of earthquakes can occur along the fault until the stress subsides and a new cycle begins. Our machine learning models predict a new period of strong earthquakes between 2040 ± 5 and 2057 ± 5, 2024 ± 1 and 2026 ± 1, 2026 ± 2 and 2031 ± 2, 2024 ± 2 and 2029 ± 2, and 2022 ± 1 and 2028 ± 2 for the five active seismic zones of United States, Mexico, South America, Japan, and Southern China and Northern India, respectively. In additon, our methodology can be applied in areas where moderate earthquakes occur, as for the case of the Parkfield section of the San Andreas fault (California, United States). Our methodology explains why a moderate earthquake could never occur in 1988 ± 5 as proposed and why the long-awaited Parkfield earthquake event occurred in 2004. Furthermore, our model predicts that possible seismic events may occur between 2019 and 2031, with a high probability of earthquake events at Parkfield around 2025 ± 2 years.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-22
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/202832
Velasco Herrera, Victor Manuel; Rossello, Eduardo Antonio; Orgeira, Maria Julia; Arioni, Lucas; Soon, Willie; et al.; Long-Term Forecasting of Strong Earthquakes in North America, South America, Japan, Southern China and Northern India With Machine Learning; Frontiers Media; Frontiers in Earth Science; 10; 22-6-2022; 1-25
2296-6463
CONICET Digital
CONICET
url http://hdl.handle.net/11336/202832
identifier_str_mv Velasco Herrera, Victor Manuel; Rossello, Eduardo Antonio; Orgeira, Maria Julia; Arioni, Lucas; Soon, Willie; et al.; Long-Term Forecasting of Strong Earthquakes in North America, South America, Japan, Southern China and Northern India With Machine Learning; Frontiers Media; Frontiers in Earth Science; 10; 22-6-2022; 1-25
2296-6463
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3389/feart.2022.905792
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/feart.2022.905792/full
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613742921252864
score 13.070432