Automatic Spot Addressing in cDNA Microarray Images
- Autores
- Larese, Mónica G.; Gómez, Juan Carlos
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Complementary DNA (cDNA) microarrays are a powerful high throughput technology developed in the last decade allowing researchers to analyze the behaviour and interaction of thousands of genes simultaneously. The large amount of information provided by microarray images requires automatic techniques to develop accurate and ef cient processing. Each spot in the microarray contains the hybridization level of a single gene. One of the most important features of these images are the regularity and pseudo-periodicity implicit in the spot arrangement. In this paper, an automatic approach based on texture analysis techniques is proposed to localize spots in microarray images. The method estimates the displacement vectors which characterize the texture (i.e. the spot arrangement). This is achieved by means of applying the generalized Hough transform on the 2D autocorrelation function previously segmented via morphological operations. The obtained displacement vectors are used to generate a grid template which is matched to the original image. The root mean square error between the estimated locations and the ones computed via a semiautomatic tool is computed to evaluate the accuracy of the process. The method yields promising results with low errors.
V Workshop de Computación Gráfica, Imágenes Y Visualización
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Informática
bioinformatics
cDNA microarrays
image analysis
automatic addressing
Image Representation
Bioingeniería
Image displays
Logic arrays - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22311
Ver los metadatos del registro completo
| id |
SEDICI_477d010848ae4610cc52c4d12a6ec8e2 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22311 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Automatic Spot Addressing in cDNA Microarray ImagesLarese, Mónica G.Gómez, Juan CarlosCiencias InformáticasInformáticabioinformaticscDNA microarraysimage analysisautomatic addressingImage RepresentationBioingenieríaImage displaysLogic arraysComplementary DNA (cDNA) microarrays are a powerful high throughput technology developed in the last decade allowing researchers to analyze the behaviour and interaction of thousands of genes simultaneously. The large amount of information provided by microarray images requires automatic techniques to develop accurate and ef cient processing. Each spot in the microarray contains the hybridization level of a single gene. One of the most important features of these images are the regularity and pseudo-periodicity implicit in the spot arrangement. In this paper, an automatic approach based on texture analysis techniques is proposed to localize spots in microarray images. The method estimates the displacement vectors which characterize the texture (i.e. the spot arrangement). This is achieved by means of applying the generalized Hough transform on the 2D autocorrelation function previously segmented via morphological operations. The obtained displacement vectors are used to generate a grid template which is matched to the original image. The root mean square error between the estimated locations and the ones computed via a semiautomatic tool is computed to evaluate the accuracy of the process. The method yields promising results with low errors.V Workshop de Computación Gráfica, Imágenes Y VisualizaciónRed de Universidades con Carreras en Informática (RedUNCI)2007info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf677-688http://sedici.unlp.edu.ar/handle/10915/22311enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:36:33Zoai:sedici.unlp.edu.ar:10915/22311Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:36:33.311SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Automatic Spot Addressing in cDNA Microarray Images |
| title |
Automatic Spot Addressing in cDNA Microarray Images |
| spellingShingle |
Automatic Spot Addressing in cDNA Microarray Images Larese, Mónica G. Ciencias Informáticas Informática bioinformatics cDNA microarrays image analysis automatic addressing Image Representation Bioingeniería Image displays Logic arrays |
| title_short |
Automatic Spot Addressing in cDNA Microarray Images |
| title_full |
Automatic Spot Addressing in cDNA Microarray Images |
| title_fullStr |
Automatic Spot Addressing in cDNA Microarray Images |
| title_full_unstemmed |
Automatic Spot Addressing in cDNA Microarray Images |
| title_sort |
Automatic Spot Addressing in cDNA Microarray Images |
| dc.creator.none.fl_str_mv |
Larese, Mónica G. Gómez, Juan Carlos |
| author |
Larese, Mónica G. |
| author_facet |
Larese, Mónica G. Gómez, Juan Carlos |
| author_role |
author |
| author2 |
Gómez, Juan Carlos |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Informática bioinformatics cDNA microarrays image analysis automatic addressing Image Representation Bioingeniería Image displays Logic arrays |
| topic |
Ciencias Informáticas Informática bioinformatics cDNA microarrays image analysis automatic addressing Image Representation Bioingeniería Image displays Logic arrays |
| dc.description.none.fl_txt_mv |
Complementary DNA (cDNA) microarrays are a powerful high throughput technology developed in the last decade allowing researchers to analyze the behaviour and interaction of thousands of genes simultaneously. The large amount of information provided by microarray images requires automatic techniques to develop accurate and ef cient processing. Each spot in the microarray contains the hybridization level of a single gene. One of the most important features of these images are the regularity and pseudo-periodicity implicit in the spot arrangement. In this paper, an automatic approach based on texture analysis techniques is proposed to localize spots in microarray images. The method estimates the displacement vectors which characterize the texture (i.e. the spot arrangement). This is achieved by means of applying the generalized Hough transform on the 2D autocorrelation function previously segmented via morphological operations. The obtained displacement vectors are used to generate a grid template which is matched to the original image. The root mean square error between the estimated locations and the ones computed via a semiautomatic tool is computed to evaluate the accuracy of the process. The method yields promising results with low errors. V Workshop de Computación Gráfica, Imágenes Y Visualización Red de Universidades con Carreras en Informática (RedUNCI) |
| description |
Complementary DNA (cDNA) microarrays are a powerful high throughput technology developed in the last decade allowing researchers to analyze the behaviour and interaction of thousands of genes simultaneously. The large amount of information provided by microarray images requires automatic techniques to develop accurate and ef cient processing. Each spot in the microarray contains the hybridization level of a single gene. One of the most important features of these images are the regularity and pseudo-periodicity implicit in the spot arrangement. In this paper, an automatic approach based on texture analysis techniques is proposed to localize spots in microarray images. The method estimates the displacement vectors which characterize the texture (i.e. the spot arrangement). This is achieved by means of applying the generalized Hough transform on the 2D autocorrelation function previously segmented via morphological operations. The obtained displacement vectors are used to generate a grid template which is matched to the original image. The root mean square error between the estimated locations and the ones computed via a semiautomatic tool is computed to evaluate the accuracy of the process. The method yields promising results with low errors. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22311 |
| url |
http://sedici.unlp.edu.ar/handle/10915/22311 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| dc.format.none.fl_str_mv |
application/pdf 677-688 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846782821186666496 |
| score |
12.982451 |