Oblique projections and abstract splines
- Autores
- Corach, Gustavo; Maestripieri, A.; Stojanoff, Demetrio
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a closed subspace L of a Hilbert space ℋ and a bounded linear operator A ∈ L(ℋ) which is positive, consider the set of all A-self-adjoint projections onto Y: ℘(A,Y) = {Q ∈ L(ℋ): Q2 = Q, Q(ℋ) = Y, AQ = Q*A}. In addition, if ℋ1 is another Hilbert space, T : ℋ → ℋ1 is a bounded linear operator such that T*T = A and ξ ∈ ℋ, consider the set of (T, Y) spline interpolants to ξ: sp(T, Y, ξ) = { η ε ξ + Y : ∥Tη∥ = min ∥T(ξ + σ)∥}. A strong relationship exists between ℘(A, Y) and s p(T, Y, ξ). In fact, ∥(A, Y) is not empty if and only if s p(T, Y, ξ) is not empty for every ξ ∈ ℋ. In this case, for any ξ ∈ ℋ\Y it holds s p(T, Y, ξ) = {(1 - Q)ξ:Q ∈ ℘(A, Y)} and for any ξ ∈ ℋ, the unique vector of s p(T, Y, ξ) with minimal norm is (1 - PA,Y)ξ, where PA,L is a distinguished element of ℘(A, Y). These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators.
Facultad de Ciencias Exactas - Materia
- Matemática
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/84951
Ver los metadatos del registro completo
| id |
SEDICI_476c83720ba21d5ccd289a71a9d64055 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/84951 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Oblique projections and abstract splinesCorach, GustavoMaestripieri, A.Stojanoff, DemetrioMatemáticaGiven a closed subspace L of a Hilbert space ℋ and a bounded linear operator A ∈ L(ℋ) which is positive, consider the set of all A-self-adjoint projections onto Y: ℘(A,Y) = {Q ∈ L(ℋ): Q2 = Q, Q(ℋ) = Y, AQ = Q*A}. In addition, if ℋ1 is another Hilbert space, T : ℋ → ℋ1 is a bounded linear operator such that T*T = A and ξ ∈ ℋ, consider the set of (T, Y) spline interpolants to ξ: sp(T, Y, ξ) = { η ε ξ + Y : ∥Tη∥ = min ∥T(ξ + σ)∥}. A strong relationship exists between ℘(A, Y) and s p(T, Y, ξ). In fact, ∥(A, Y) is not empty if and only if s p(T, Y, ξ) is not empty for every ξ ∈ ℋ. In this case, for any ξ ∈ ℋ\Y it holds s p(T, Y, ξ) = {(1 - Q)ξ:Q ∈ ℘(A, Y)} and for any ξ ∈ ℋ, the unique vector of s p(T, Y, ξ) with minimal norm is (1 - PA,Y)ξ, where PA,L is a distinguished element of ℘(A, Y). These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators.Facultad de Ciencias Exactas2002info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf189-206http://sedici.unlp.edu.ar/handle/10915/84951enginfo:eu-repo/semantics/altIdentifier/issn/0021-9045info:eu-repo/semantics/altIdentifier/doi/10.1006/jath.2002.3696info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T12:55:38Zoai:sedici.unlp.edu.ar:10915/84951Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 12:55:39.17SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Oblique projections and abstract splines |
| title |
Oblique projections and abstract splines |
| spellingShingle |
Oblique projections and abstract splines Corach, Gustavo Matemática |
| title_short |
Oblique projections and abstract splines |
| title_full |
Oblique projections and abstract splines |
| title_fullStr |
Oblique projections and abstract splines |
| title_full_unstemmed |
Oblique projections and abstract splines |
| title_sort |
Oblique projections and abstract splines |
| dc.creator.none.fl_str_mv |
Corach, Gustavo Maestripieri, A. Stojanoff, Demetrio |
| author |
Corach, Gustavo |
| author_facet |
Corach, Gustavo Maestripieri, A. Stojanoff, Demetrio |
| author_role |
author |
| author2 |
Maestripieri, A. Stojanoff, Demetrio |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Matemática |
| topic |
Matemática |
| dc.description.none.fl_txt_mv |
Given a closed subspace L of a Hilbert space ℋ and a bounded linear operator A ∈ L(ℋ) which is positive, consider the set of all A-self-adjoint projections onto Y: ℘(A,Y) = {Q ∈ L(ℋ): Q2 = Q, Q(ℋ) = Y, AQ = Q*A}. In addition, if ℋ1 is another Hilbert space, T : ℋ → ℋ1 is a bounded linear operator such that T*T = A and ξ ∈ ℋ, consider the set of (T, Y) spline interpolants to ξ: sp(T, Y, ξ) = { η ε ξ + Y : ∥Tη∥ = min ∥T(ξ + σ)∥}. A strong relationship exists between ℘(A, Y) and s p(T, Y, ξ). In fact, ∥(A, Y) is not empty if and only if s p(T, Y, ξ) is not empty for every ξ ∈ ℋ. In this case, for any ξ ∈ ℋ\Y it holds s p(T, Y, ξ) = {(1 - Q)ξ:Q ∈ ℘(A, Y)} and for any ξ ∈ ℋ, the unique vector of s p(T, Y, ξ) with minimal norm is (1 - PA,Y)ξ, where PA,L is a distinguished element of ℘(A, Y). These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators. Facultad de Ciencias Exactas |
| description |
Given a closed subspace L of a Hilbert space ℋ and a bounded linear operator A ∈ L(ℋ) which is positive, consider the set of all A-self-adjoint projections onto Y: ℘(A,Y) = {Q ∈ L(ℋ): Q2 = Q, Q(ℋ) = Y, AQ = Q*A}. In addition, if ℋ1 is another Hilbert space, T : ℋ → ℋ1 is a bounded linear operator such that T*T = A and ξ ∈ ℋ, consider the set of (T, Y) spline interpolants to ξ: sp(T, Y, ξ) = { η ε ξ + Y : ∥Tη∥ = min ∥T(ξ + σ)∥}. A strong relationship exists between ℘(A, Y) and s p(T, Y, ξ). In fact, ∥(A, Y) is not empty if and only if s p(T, Y, ξ) is not empty for every ξ ∈ ℋ. In this case, for any ξ ∈ ℋ\Y it holds s p(T, Y, ξ) = {(1 - Q)ξ:Q ∈ ℘(A, Y)} and for any ξ ∈ ℋ, the unique vector of s p(T, Y, ξ) with minimal norm is (1 - PA,Y)ξ, where PA,L is a distinguished element of ℘(A, Y). These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators. |
| publishDate |
2002 |
| dc.date.none.fl_str_mv |
2002 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/84951 |
| url |
http://sedici.unlp.edu.ar/handle/10915/84951 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0021-9045 info:eu-repo/semantics/altIdentifier/doi/10.1006/jath.2002.3696 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 189-206 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1847978596466950144 |
| score |
13.087074 |