Hyperuniformity on spherical surfaces
- Autores
- Meyra, Ariel Germán; Zarragoicoechea, Guillermo Jorge; Maltz, Alberto Leonardo; Lomba, Enrique; Torquato, Salvatore
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study and characterize local density fluctuations of ordered and disordered hyperuniform point distributions on spherical surfaces. In spite of the extensive literature on disordered hyperuniform systems in Euclidean geometries, to date few works have dealt with the problem of hyperuniformity in curved spaces. Indeed, some systems that display disordered hyperuniformity, like the spatial distribution of photoreceptors in avian retina, actually occur on curved surfaces. Here we will focus on the local particle number variance and its dependence on the size of the sampling window (which we take to be a spherical cap) for regular and uniform point distributions, as well as for equilibrium configurations of fluid particles interacting through Lennard-Jones, dipole-dipole, and charge-charge potentials. We show that the scaling of the local number variance as a function of the window size enables one to characterize hyperuniform and nonhyperuniform point patterns also on spherical surfaces.
Instituto de Física de Líquidos y Sistemas Biológicos
Comisión de Investigaciones Científicas de la provincia de Buenos Aires - Materia
-
Física
Physics
Statistical physics
Euclidean geometry
Focus (optics)
Spherical cap
Point (geometry)
Function (mathematics)
Particle number
Scaling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/124863
Ver los metadatos del registro completo
id |
SEDICI_46947f228402c819e1d048b67898a608 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/124863 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Hyperuniformity on spherical surfacesMeyra, Ariel GermánZarragoicoechea, Guillermo JorgeMaltz, Alberto LeonardoLomba, EnriqueTorquato, SalvatoreFísicaPhysicsStatistical physicsEuclidean geometryFocus (optics)Spherical capPoint (geometry)Function (mathematics)Particle numberScalingWe study and characterize local density fluctuations of ordered and disordered hyperuniform point distributions on spherical surfaces. In spite of the extensive literature on disordered hyperuniform systems in Euclidean geometries, to date few works have dealt with the problem of hyperuniformity in curved spaces. Indeed, some systems that display disordered hyperuniformity, like the spatial distribution of photoreceptors in avian retina, actually occur on curved surfaces. Here we will focus on the local particle number variance and its dependence on the size of the sampling window (which we take to be a spherical cap) for regular and uniform point distributions, as well as for equilibrium configurations of fluid particles interacting through Lennard-Jones, dipole-dipole, and charge-charge potentials. We show that the scaling of the local number variance as a function of the window size enables one to characterize hyperuniform and nonhyperuniform point patterns also on spherical surfaces.Instituto de Física de Líquidos y Sistemas BiológicosComisión de Investigaciones Científicas de la provincia de Buenos Aires2019info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/124863enginfo:eu-repo/semantics/altIdentifier/issn/2470-0045info:eu-repo/semantics/altIdentifier/issn/2470-0053info:eu-repo/semantics/altIdentifier/arxiv/1812.04729info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.100.022107info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:21:37Zoai:sedici.unlp.edu.ar:10915/124863Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:21:37.89SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Hyperuniformity on spherical surfaces |
title |
Hyperuniformity on spherical surfaces |
spellingShingle |
Hyperuniformity on spherical surfaces Meyra, Ariel Germán Física Physics Statistical physics Euclidean geometry Focus (optics) Spherical cap Point (geometry) Function (mathematics) Particle number Scaling |
title_short |
Hyperuniformity on spherical surfaces |
title_full |
Hyperuniformity on spherical surfaces |
title_fullStr |
Hyperuniformity on spherical surfaces |
title_full_unstemmed |
Hyperuniformity on spherical surfaces |
title_sort |
Hyperuniformity on spherical surfaces |
dc.creator.none.fl_str_mv |
Meyra, Ariel Germán Zarragoicoechea, Guillermo Jorge Maltz, Alberto Leonardo Lomba, Enrique Torquato, Salvatore |
author |
Meyra, Ariel Germán |
author_facet |
Meyra, Ariel Germán Zarragoicoechea, Guillermo Jorge Maltz, Alberto Leonardo Lomba, Enrique Torquato, Salvatore |
author_role |
author |
author2 |
Zarragoicoechea, Guillermo Jorge Maltz, Alberto Leonardo Lomba, Enrique Torquato, Salvatore |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Física Physics Statistical physics Euclidean geometry Focus (optics) Spherical cap Point (geometry) Function (mathematics) Particle number Scaling |
topic |
Física Physics Statistical physics Euclidean geometry Focus (optics) Spherical cap Point (geometry) Function (mathematics) Particle number Scaling |
dc.description.none.fl_txt_mv |
We study and characterize local density fluctuations of ordered and disordered hyperuniform point distributions on spherical surfaces. In spite of the extensive literature on disordered hyperuniform systems in Euclidean geometries, to date few works have dealt with the problem of hyperuniformity in curved spaces. Indeed, some systems that display disordered hyperuniformity, like the spatial distribution of photoreceptors in avian retina, actually occur on curved surfaces. Here we will focus on the local particle number variance and its dependence on the size of the sampling window (which we take to be a spherical cap) for regular and uniform point distributions, as well as for equilibrium configurations of fluid particles interacting through Lennard-Jones, dipole-dipole, and charge-charge potentials. We show that the scaling of the local number variance as a function of the window size enables one to characterize hyperuniform and nonhyperuniform point patterns also on spherical surfaces. Instituto de Física de Líquidos y Sistemas Biológicos Comisión de Investigaciones Científicas de la provincia de Buenos Aires |
description |
We study and characterize local density fluctuations of ordered and disordered hyperuniform point distributions on spherical surfaces. In spite of the extensive literature on disordered hyperuniform systems in Euclidean geometries, to date few works have dealt with the problem of hyperuniformity in curved spaces. Indeed, some systems that display disordered hyperuniformity, like the spatial distribution of photoreceptors in avian retina, actually occur on curved surfaces. Here we will focus on the local particle number variance and its dependence on the size of the sampling window (which we take to be a spherical cap) for regular and uniform point distributions, as well as for equilibrium configurations of fluid particles interacting through Lennard-Jones, dipole-dipole, and charge-charge potentials. We show that the scaling of the local number variance as a function of the window size enables one to characterize hyperuniform and nonhyperuniform point patterns also on spherical surfaces. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/124863 |
url |
http://sedici.unlp.edu.ar/handle/10915/124863 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2470-0045 info:eu-repo/semantics/altIdentifier/issn/2470-0053 info:eu-repo/semantics/altIdentifier/arxiv/1812.04729 info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.100.022107 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064273085693952 |
score |
13.22299 |