Hyperuniformity on spherical surfaces

Autores
Meyra, Ariel Germán; Zarragoicoechea, Guillermo Jorge; Maltz, Alberto Leonardo; Lomba, Enrique; Torquato, Salvatore
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study and characterize local density fluctuations of ordered and disordered hyperuniform point distributions on spherical surfaces. In spite of the extensive literature on disordered hyperuniform systems in Euclidean geometries, to date few works have dealt with the problem of hyperuniformity in curved spaces. Indeed, some systems that display disordered hyperuniformity, like the spatial distribution of photoreceptors in avian retina, actually occur on curved surfaces. Here we will focus on the local particle number variance and its dependence on the size of the sampling window (which we take to be a spherical cap) for regular and uniform point distributions, as well as for equilibrium configurations of fluid particles interacting through Lennard-Jones, dipole-dipole, and charge-charge potentials. We show that the scaling of the local number variance as a function of the window size enables one to characterize hyperuniform and nonhyperuniform point patterns also on spherical surfaces.
Instituto de Física de Líquidos y Sistemas Biológicos
Comisión de Investigaciones Científicas de la provincia de Buenos Aires
Materia
Física
Physics
Statistical physics
Euclidean geometry
Focus (optics)
Spherical cap
Point (geometry)
Function (mathematics)
Particle number
Scaling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/124863

id SEDICI_46947f228402c819e1d048b67898a608
oai_identifier_str oai:sedici.unlp.edu.ar:10915/124863
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Hyperuniformity on spherical surfacesMeyra, Ariel GermánZarragoicoechea, Guillermo JorgeMaltz, Alberto LeonardoLomba, EnriqueTorquato, SalvatoreFísicaPhysicsStatistical physicsEuclidean geometryFocus (optics)Spherical capPoint (geometry)Function (mathematics)Particle numberScalingWe study and characterize local density fluctuations of ordered and disordered hyperuniform point distributions on spherical surfaces. In spite of the extensive literature on disordered hyperuniform systems in Euclidean geometries, to date few works have dealt with the problem of hyperuniformity in curved spaces. Indeed, some systems that display disordered hyperuniformity, like the spatial distribution of photoreceptors in avian retina, actually occur on curved surfaces. Here we will focus on the local particle number variance and its dependence on the size of the sampling window (which we take to be a spherical cap) for regular and uniform point distributions, as well as for equilibrium configurations of fluid particles interacting through Lennard-Jones, dipole-dipole, and charge-charge potentials. We show that the scaling of the local number variance as a function of the window size enables one to characterize hyperuniform and nonhyperuniform point patterns also on spherical surfaces.Instituto de Física de Líquidos y Sistemas BiológicosComisión de Investigaciones Científicas de la provincia de Buenos Aires2019info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/124863enginfo:eu-repo/semantics/altIdentifier/issn/2470-0045info:eu-repo/semantics/altIdentifier/issn/2470-0053info:eu-repo/semantics/altIdentifier/arxiv/1812.04729info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.100.022107info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:21:37Zoai:sedici.unlp.edu.ar:10915/124863Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:21:37.89SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Hyperuniformity on spherical surfaces
title Hyperuniformity on spherical surfaces
spellingShingle Hyperuniformity on spherical surfaces
Meyra, Ariel Germán
Física
Physics
Statistical physics
Euclidean geometry
Focus (optics)
Spherical cap
Point (geometry)
Function (mathematics)
Particle number
Scaling
title_short Hyperuniformity on spherical surfaces
title_full Hyperuniformity on spherical surfaces
title_fullStr Hyperuniformity on spherical surfaces
title_full_unstemmed Hyperuniformity on spherical surfaces
title_sort Hyperuniformity on spherical surfaces
dc.creator.none.fl_str_mv Meyra, Ariel Germán
Zarragoicoechea, Guillermo Jorge
Maltz, Alberto Leonardo
Lomba, Enrique
Torquato, Salvatore
author Meyra, Ariel Germán
author_facet Meyra, Ariel Germán
Zarragoicoechea, Guillermo Jorge
Maltz, Alberto Leonardo
Lomba, Enrique
Torquato, Salvatore
author_role author
author2 Zarragoicoechea, Guillermo Jorge
Maltz, Alberto Leonardo
Lomba, Enrique
Torquato, Salvatore
author2_role author
author
author
author
dc.subject.none.fl_str_mv Física
Physics
Statistical physics
Euclidean geometry
Focus (optics)
Spherical cap
Point (geometry)
Function (mathematics)
Particle number
Scaling
topic Física
Physics
Statistical physics
Euclidean geometry
Focus (optics)
Spherical cap
Point (geometry)
Function (mathematics)
Particle number
Scaling
dc.description.none.fl_txt_mv We study and characterize local density fluctuations of ordered and disordered hyperuniform point distributions on spherical surfaces. In spite of the extensive literature on disordered hyperuniform systems in Euclidean geometries, to date few works have dealt with the problem of hyperuniformity in curved spaces. Indeed, some systems that display disordered hyperuniformity, like the spatial distribution of photoreceptors in avian retina, actually occur on curved surfaces. Here we will focus on the local particle number variance and its dependence on the size of the sampling window (which we take to be a spherical cap) for regular and uniform point distributions, as well as for equilibrium configurations of fluid particles interacting through Lennard-Jones, dipole-dipole, and charge-charge potentials. We show that the scaling of the local number variance as a function of the window size enables one to characterize hyperuniform and nonhyperuniform point patterns also on spherical surfaces.
Instituto de Física de Líquidos y Sistemas Biológicos
Comisión de Investigaciones Científicas de la provincia de Buenos Aires
description We study and characterize local density fluctuations of ordered and disordered hyperuniform point distributions on spherical surfaces. In spite of the extensive literature on disordered hyperuniform systems in Euclidean geometries, to date few works have dealt with the problem of hyperuniformity in curved spaces. Indeed, some systems that display disordered hyperuniformity, like the spatial distribution of photoreceptors in avian retina, actually occur on curved surfaces. Here we will focus on the local particle number variance and its dependence on the size of the sampling window (which we take to be a spherical cap) for regular and uniform point distributions, as well as for equilibrium configurations of fluid particles interacting through Lennard-Jones, dipole-dipole, and charge-charge potentials. We show that the scaling of the local number variance as a function of the window size enables one to characterize hyperuniform and nonhyperuniform point patterns also on spherical surfaces.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/124863
url http://sedici.unlp.edu.ar/handle/10915/124863
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2470-0045
info:eu-repo/semantics/altIdentifier/issn/2470-0053
info:eu-repo/semantics/altIdentifier/arxiv/1812.04729
info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.100.022107
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064273085693952
score 13.22299