Machine Learning in Drug Discovery and Development Part 1: A Primer

Autores
Talevi, Alan; Morales, Juan Francisco; Hather, Gregory; Podichetty, Jagdeep T.; Kim, Sarah; Bloomingdale, Peter C.; Kim, Samuel; Burton, Jackson; Brown, Joshua D.; Winterstein, Almut G.; Schmidt, Stephan; White, Jensen Kael; Conrado, Daniela J.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Artificial intelligence, in particular machine learning (ML), has emerged as a key promising pillar to overcome the high failure rate in drug development. Here, we present a primer on the ML algorithms most commonly used in drug discovery and development. We also list possible data sources, describe good practices for ML model development and validation, and share a reproducible example. A companion article will summarize applications of ML in drug discovery, drug development, and postapproval phase.
Laboratorio de Investigación y Desarrollo de Bioactivos
Materia
Química
Machine learning
Algorithms
Drug development
Tutorial
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/119195

id SEDICI_4569ee1b77f10dee863e6f2c8edafbf5
oai_identifier_str oai:sedici.unlp.edu.ar:10915/119195
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Machine Learning in Drug Discovery and Development Part 1: A PrimerTalevi, AlanMorales, Juan FranciscoHather, GregoryPodichetty, Jagdeep T.Kim, SarahBloomingdale, Peter C.Kim, SamuelBurton, JacksonBrown, Joshua D.Winterstein, Almut G.Schmidt, StephanWhite, Jensen KaelConrado, Daniela J.QuímicaMachine learningAlgorithmsDrug developmentTutorialArtificial intelligence, in particular machine learning (ML), has emerged as a key promising pillar to overcome the high failure rate in drug development. Here, we present a primer on the ML algorithms most commonly used in drug discovery and development. We also list possible data sources, describe good practices for ML model development and validation, and share a reproducible example. A companion article will summarize applications of ML in drug discovery, drug development, and postapproval phase.Laboratorio de Investigación y Desarrollo de Bioactivos2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf129-142http://sedici.unlp.edu.ar/handle/10915/119195enginfo:eu-repo/semantics/altIdentifier/issn/2163-8306info:eu-repo/semantics/altIdentifier/doi/10.1002/psp4.12491info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:28:05Zoai:sedici.unlp.edu.ar:10915/119195Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:28:05.895SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Machine Learning in Drug Discovery and Development Part 1: A Primer
title Machine Learning in Drug Discovery and Development Part 1: A Primer
spellingShingle Machine Learning in Drug Discovery and Development Part 1: A Primer
Talevi, Alan
Química
Machine learning
Algorithms
Drug development
Tutorial
title_short Machine Learning in Drug Discovery and Development Part 1: A Primer
title_full Machine Learning in Drug Discovery and Development Part 1: A Primer
title_fullStr Machine Learning in Drug Discovery and Development Part 1: A Primer
title_full_unstemmed Machine Learning in Drug Discovery and Development Part 1: A Primer
title_sort Machine Learning in Drug Discovery and Development Part 1: A Primer
dc.creator.none.fl_str_mv Talevi, Alan
Morales, Juan Francisco
Hather, Gregory
Podichetty, Jagdeep T.
Kim, Sarah
Bloomingdale, Peter C.
Kim, Samuel
Burton, Jackson
Brown, Joshua D.
Winterstein, Almut G.
Schmidt, Stephan
White, Jensen Kael
Conrado, Daniela J.
author Talevi, Alan
author_facet Talevi, Alan
Morales, Juan Francisco
Hather, Gregory
Podichetty, Jagdeep T.
Kim, Sarah
Bloomingdale, Peter C.
Kim, Samuel
Burton, Jackson
Brown, Joshua D.
Winterstein, Almut G.
Schmidt, Stephan
White, Jensen Kael
Conrado, Daniela J.
author_role author
author2 Morales, Juan Francisco
Hather, Gregory
Podichetty, Jagdeep T.
Kim, Sarah
Bloomingdale, Peter C.
Kim, Samuel
Burton, Jackson
Brown, Joshua D.
Winterstein, Almut G.
Schmidt, Stephan
White, Jensen Kael
Conrado, Daniela J.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Química
Machine learning
Algorithms
Drug development
Tutorial
topic Química
Machine learning
Algorithms
Drug development
Tutorial
dc.description.none.fl_txt_mv Artificial intelligence, in particular machine learning (ML), has emerged as a key promising pillar to overcome the high failure rate in drug development. Here, we present a primer on the ML algorithms most commonly used in drug discovery and development. We also list possible data sources, describe good practices for ML model development and validation, and share a reproducible example. A companion article will summarize applications of ML in drug discovery, drug development, and postapproval phase.
Laboratorio de Investigación y Desarrollo de Bioactivos
description Artificial intelligence, in particular machine learning (ML), has emerged as a key promising pillar to overcome the high failure rate in drug development. Here, we present a primer on the ML algorithms most commonly used in drug discovery and development. We also list possible data sources, describe good practices for ML model development and validation, and share a reproducible example. A companion article will summarize applications of ML in drug discovery, drug development, and postapproval phase.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/119195
url http://sedici.unlp.edu.ar/handle/10915/119195
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2163-8306
info:eu-repo/semantics/altIdentifier/doi/10.1002/psp4.12491
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.format.none.fl_str_mv application/pdf
129-142
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616159465308160
score 13.070432